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1.1 Introduction 

1.1.1 WHAT IS ECONOMETRICS? 

Econometrics refers to the application of economic theory and statistical techniques for the 

purpose of testing hypothesis and estimating and forecasting economic phenomenon. Literally 

interpreted, econometrics means “economic measurement.” Although measurement is an 

important part of econometrics, the scope of econometrics is much broader, as can be seen 

from the following quotations: Econometrics, the result of a certain outlook on the role of 

economics, consists of the application of mathematical statistics to economic data to lend 

empirical support to the models constructed by mathematical economics and to obtain 

numerical results. econometrics may be defined as the quantitative analysis of actual economic 

phenomena based on the concurrent development of theory and observation, related by 

appropriate methods of inference. Econometrics may be defined as the social science in which 

the tools of economic theory, mathematics, and statistical inference are applied to the analysis 

economic phenomena. Econometrics is concerned with the empirical determination of 

economic laws. 

1.1.2  BASIC ECONOMETRICS 

The art of the econometrician consists in finding the set of assumptions that are both 

sufficiently specific and sufficiently realistic to allow him to take the best possible advantage 

of the data available to him. Econometricians are a positive help in trying to dispel the poor 

public image of economics (quantitative or otherwise) as a subject in which empty boxes are 

opened by assuming the existence of can-openers to reveal contents which any ten economists 

will interpret in 11 ways. The method of econometric research aims, essentially, at a 

conjunction of economic theory and actual measurements, using the theory and technique of 

statistical inference as a bridge pier. 

 

1.2 Objectives 

UNIT - I



1. It helps to explainthe behavior of a forth coming period that is forecasting economic 

phenomena. 

2.  It helps to prove the old and established relationships among the variables or 

between the variables 

3.  It helps to establish new theories and new relationships. 

4.  It helps to test the hypotheses and estimation of the parameter. 

 

Econometric methods are widely used in economic research. Research required 

different variety of techniques, which is varied from one subject to another. In recent decades 

an increased emphasis has been laid down on the development and use of statistical 

techniques for the analysis of the economic problems. Prof. Ragnar Frisch,(Father of 

Econometrics) a Norwegian economist and statistician first of all named this science as 

“Econometrics” in 1926. Econometrics emerged as an independent discipline studying 

economics phenomena. But it recognized and got attention after the world war. In 1931, the 

realization of the necessity of   econometric work had become so evident, which made to 

form “Econometric Society”. This International association includes practically all the 

worker in the field. The society published a periodical called “Econometrica” which 

disseminates the result of econometric research work. The electronic gadgets like computers 

have stimulated the utilization of econometrics in recent days. 

 

a) Meaning 

Econometrics means economic measurement. Econometrics deals with the measurement of 

economic relationships. It‟s an amalgamation of economic theory with mathematics and 

statistics. It is a science which combines economic theory with economic statistics and tries 

by mathematical and statistical methods to investigate the empirical support of general 

economic law established by economic theory. The term econometrics is formed from two 

words of Greek origin, „oukovouia’ meaning economy and „uetpov’ meaning measure. 

b) Definitions 

The book „Econometric Theory‟ was authored by Arthur S Goldberger, and defined 

econometrics in that book as“Econometrics may be defined as the social science in which the 

tools of economic theory, mathematics and statistical inference are applied to the analysis of 

economic phenomena”. 

MEANING AND DEFINITION



Gerhard Tinbergen points out that “Econometrics, as a result of certain outlook on the role 

of economics, consists of application of mathematical statistics to economic data to lend 

empirical support to the models constructed by mathematical economics and to obtain 

numerical results”. 

 H Theil “Econometrics is concerned with the empirical determination of economic laws” 

 In the words of Ragnar Frisch “The mutual penetration of quantitative econometric theory 

and statistical observation is the essence of econometrics”. Thus, econometrics may be 

considered as the integration of economics, mathematics and statistics for the purpose of 

providing numerical values for the parameters of economic relationships and verifying 

economic theories. It is a special type of economic analysis and research in which the general 

economic theory, formulated in mathematical terms, is combined with empirical 

measurement of economic phenomena. 

 

SCOPE OF ECONOMETRICS 

Scope and areas of application of econometrics is expanding constantly. It includes 

simple as well as sophisticated mathematical and statistical techniques. Econometrics is the 

application of specific methods in the general field of economics science. In this sense, it 

plays a service role to economic analysis. By establishing new relationships and theories it 

serves the policy makers. 

Government Aspect: 

Suppose government want to devalue its currency to correct the BOP position. For 

estimating the consequences of devaluation, the government is concerned with price 

elasticity‟s of imports and exports. The price elasticity is to be estimated with the help of 

demand function of import and export commodities. Here, the econometric tools will be 

applied. 

Producer Aspect: 

Suppose a producer wants to maximize his profit, the producer will choose the level 

of production which gives him maximum surplus . That is minimum cost of production and 

maximum output, which will be solved with help of econometric methods. In capitalistic 

economy too, the econometric help the producers in making rational calculations, Demand 

function, Price elasticity‟s and constraints help a producer to choose his field of investment. 

Econometrics help in establish new relationships and prove old theorems. Econometrics is the 

outstanding method for the verification of economic theorem. 



Consumer Aspect: 

Effect of the taxation on consumers or effects of government expenditures on 

consumers standard of living are come under the purview of econometric analysis. Optimum 

allocation of resources has been solved with the development of the theory of programming. 

Professor Oscar Lange explained the scope around three groups of questions. 

(1) Earlier studies were centered round the main problem of capitalistic economy that is 

forecasting of business cycle. This type of study was a thing of past. 

(2) Secondly econometric researches were connected with market research. Analysis of 

demand function, Production function, Cost function, Supply function, Distribution of 

wealth. etc all problems connected with market analysis. 

(3) The third group of question related to theory of programming. It includes the questions 

relating to the whole of the economy. This field is related with planned and socialistic 

economies. These studies have been stimulated with the growth of communistic countries. 

Now – a – days encompass mainly testing hypotheses, estimation of the parameters, 

usages of estimates of the parameter, ascertaining the proper functional form of economic 

relations, measuring the effects of imperfect data and study of the feedback relationships. 

Hence, whatsoever may the part of economy, or types of markets, the econometric tools are 

very useful for interpreting them. Whether a producer or consumer, supplier or buyer, 

government or public, econometrics will help in rational calculation in economic phenomena. 

Econometrics provides equally valuable assistance to normative as well as positive 

economics. 

FEATURES OF AN EQUATION 

Econometric theory is mainly concerned with quantitative relationships among 

economic variables. Quantitative statements are usually expressed in the form of equation 

with specified numerical coefficients. Prof. Carl.F.Christ expressed that the equation must 

have the following features: 

1. An economic equation should be relevant to the phenomenon being studied. 

2. Equation should be simple to understand. 

3. Equation should be consistent and consider only the relevant part of the theory. 

4. Equation relating to a problem should be consistent with available relevant data. 

5. The co-efficient of an equation will affect the economic inferences, so it is 

desirable to have an accurate knowledge about the co-efficient. 

6. Equation must have forecasting ability, because econometric study concerned with 



future.  

The above all features can be simplified as follows: 

“An equation may have relevance, simplicity, theoretical probability, explanatory 

ability, accuracy of co-efficient and forecasting ability” 

 

TOOLS OF ECONOMETRICS 
 

Tools of Econometrics are Mathematics and Statistics. Econometrics transforms 

economic theory into mathematical terms and utilizes statistical methods to derive  economic 

relationships under certain assumptions. Algebra, properties of number system, Calculus, 

Statistical Data, statistical methods of sampling and testing the hypothesis are the tools of 

Econometrics. 

LIMITATIONS OF ECONOMETRICS 

a. Applicable only to quantifiable phenomena 

b. Lack of moral judgments, possibility of spurious regressions. 

c. Irrational human behavior leads challenges in specifying variables and model 

construction for estimation. 

d. Econometric model construction and data analysis are time consuming, tedious and 

complex because of mathematical statistical knowledge and economic theoretical knowledge 

are needed. 

e. Data are scarce relative to the number of parameter needed to be estimated 

f. Econometrics is sometime criticized for relying too heavily on the interpretation of 

raw data without linking it to establish economic theory or looking for casual machinist 

g. It tests the hypotheses, but neglects the concerns of error 

 

GOALS OF ECONOMETRICS 

The three main goals of econometrics are as follows: 

1. Analysis: Econometrics primarily aims at the verification of economic theories. In this 

case we say that the purpose of the research is analysis. That is, the economic models are 

formulated in an empirically testable form, to decide how well they explain the observed 

behavior of the economic units. Several econometric models can be derived from an 

economic model. Such models differ due to different choice of functional form,  specification 

of stochastic structure of the variables etc. So, a strong analysis will be carried out by 

econometrics as a prime goal to verify any economic theory and economic phenomena. 



 

2. Policy Making: The models are estimated on the basis of observed set of data and are 

tested for their suitability. This is the part of statistical inference of the modeling. Various 

estimation procedures are used to know the numerical values of the unknown parameters of 

the model. Based on various formulations of statistical models, a suitable and appropriate 

model is selected. The inference or the knowledge obtain from the numerical value of the 

coefficients are important for decision making of firms as well as formulation of the 

economic policy of the government. It helps to compare the effects of alternate policy 

decision. 

3. Forecasting: The obtained models are used for forecasting and policy formulation which 

is an essential part in any policy decision. Such forecasts help the policy makers to judge the 

goodness of fitted model and take necessary measures in order to re-adjust the relevant 

economic variables. 

 

SIGNIFICANCE OF STOCHASTIC DISTURBANCE TERM 

The disturbance term is a surrogate for all those variables that are omitted from the 

model but that collectively affect Y. The reasons for to introduce the stochastic disturbance 

term𝑈𝑖 are as follows: 

1. Vagueness of theory: The theory, if any, determining the behavior of Y may be, and often 

is, incomplete. We might know for certain that weekly income X influences weekly 

consumption expenditure Y, but we might be ignorant or unsure about the other variables 

affecting Y. Therefore, ui may be used as a substitute for all the excluded or omitted variables 

from the model. 

2.Unavailability of data: Even if we know what some of the excluded variables are and 

therefore consider a multiple regression rather than a simple regression, we may not have 

quantitative information about these variables. It is a common experience in empirical 

analysis that the data we would ideally like to have often are not available. For example, in 

principle we could introduce family wealth as an explanatory variable in addition to the 

income variable to explain family consumption expenditure. But unfortunately, information 

on family wealth generally is not available. Therefore, we may be forced to omit the wealth 

variable from our model despite its great theoretical relevance in explaining consumption 

expenditure. 



3. Core variables versus peripheral variables: Assume in our consumption-income 

example that besides income X1, the number of children per family X2, sex X3, religion X4, 

education X5, and geographical region X6 also affect consumption expenditure. But it is 

quite possible that the joint influence of all or some of these variables may be so small and at 

best nonsystematic or random that as a practical matter and for cost considerations it does not 

pay to introduce them into the model explicitly. One hopes that their combined effect can be 

treated as a random variable ui. 

4. Intrinsic randomness in human behavior: Even if we succeed in introducing all the 

relevant variables into the model, there is bound to be some "intrinsic" randomness in 

individual Y's that cannot be explained no matter how hard we try. The disturbances, the ui‟s, 

may very well reflect this intrinsic randomness. 

5. Poor proxy variables: Although the classical regression model assumes that the variables 

Y and X are measured accurately, in practice the data may be plagued by errors of 

measurement. Consider, for example, Keynes well-known theory of the Psychological law of 

consumption function regards consumption expenditure (Yp) as a function of income (Xp). 

But since data on these variables are not directly observable, in practice we use proxy 

variables, such as current consumptionexpenditre (Y) and current income (X), which can be 

observable. Since the observed Y and X may not equal Yp and Xp, there is the problem of 

errors of measurement. The disturbance term u may in this case then also represent the errors 

of measurement. As we will see in a later chapter, if there are such errors of measurement, 

they can have serious implications for estimating the regression coefficients, the p's. 

6. Principle of parsimony: Following we would like to keep our regression model as simple 

as possible. If we can explain the behavior of Y "substantially" with two or three explanatory 

variables and if our theory is not strong enough to suggest what other variables might be 

included, why introduce more variables? Let ui represent all other variables. Of course, we 

should not exclude relevant and important variables just to keep the regression model simple 

7. Wrong functional form: Even if we have theoretically correct variables explaining a 

phenomenon and even if we can obtain data on these variables, very often we do not know 

the form of the functional relationship between the regressand and the regressors. Is 

consumption expenditure a linear (invariable) function of income or a  nonlinear (invariable) 

function? In two-variable models the functional form of the relationship can often be judged 

from the scatter diagram. But in a multiple regression model, it is not easy to determine the 

appropriate functional form, for graphically we cannot visualize scatter diagrams in multiple 

dimensions.  



1. Applications of economic theory need a responsible understanding of economic 

relationships and econometrics method. 

 

2. The econometrics theory thus becomes a very powerful tool for understanding of the 

applied economic relationships and for meaningful research in economics. 

 

3. In this unit we learn basic theory of econometrics and relevant application of the 

method. 

1.3 Methodology of Econometrics: 
 

 Broadly speaking, traditional econometric methodology proceeds along the following lines: 

1. Statement of theory or hypothesis. 

2. Specification of the mathematical model of the theory 

3. Specification of the statistical, or econometric, model 

4. Obtaining the data 

5. Estimation of the parameters of the econometric model 

6. Hypothesis testing 

7. Forecasting or prediction 

8. Using the model for control or policy purposes. 

To illustrate the preceding steps, let us consider the well-known Keynesian theory of 

consumption: 

1. Statement of theory or Hypothesis  

Keynes postulated that Marginal propensity to consume (MPC), the rate of change of 

consumption for a unit, change in income, is greater than zero but less than one.  i.e., 0 < MPC 

< 1 

2. Specification of the Mathematical Model of Consumption 

Keynes postulated a positive relationship between consumption and income.  



 

The slope of the coefficient 𝛽2 measures the MPC. 

Keynesian consumption function 

1x 221  OY  

Y = Consumption expenditure  

X = Income  

21x  are knows as the parameters of the model and are respective, the interest and slope of 

coefficient.  

Shows exact and determined relationship between consumption and income.  

The slope of the coefficient 2 , measures the MPC.  

Equation states that consumption is linearly related to income (Example of a mathematical 

model of the relationship between consumption and income that is called consumption 

function in economic).  

Single or one equation is known as single equation model and more than one equation is 

known as multiple equation model.  



3. Specification of the econometric model of consumption.  

The inexact relationship between economic variables, the econometrician would modify the 

deterministic consumption function as.  

UY  x21  

This equation is an example of the econometric model. More technically, it is an ex. of linear 

regression model.  

This you may be well represent all those factors that affect consumption but are not taken into 

account explicitly.  

The econometric consumption function hypothesizes that the dependent variable Y 

(consumption) is linearly related to the explanatory variable X (Income) but that is the 

relationship between. The two is not exact, it is subject to individual variation.  

 

 



Q: Why inexact (not exact) relationship exits?  

A: Because in addition to income, other variables affect consumption expenditure. For ex. 

are of family, ages of members of family, religion etc are likely to exert some influence on 

consumption.  

4. Original Data  

To obtain the numerical values of 21 &  we need data.  

{PCE  Personal consumption expenditure)  

Y variable in this table is the aggregate PCE GDP  isx &  a measure of aggregate income.  

Note: MPC: Average change in consumption over to change in real income.  

5. Estimation of the Econometric Model  

The statistical technique of regression analysis is the main tool used to obtain the estimates.  

The estimated consumption function  

ixY 21
ˆˆˆ    

Y of EstimateŶ  The estimated consumption function (i.e., regress line).  

Regression Analysis is used to obtain estimates.  

6. Hypothesis Testing: 

Keynes expected the MPC is positive but less than 1.  

Confirmation or refulation of economic theories on the basis of sample evidence is based on a 

branch of statistical theory known as statistical inference (hypothesis testing)  

7. Forecasting or Prediction 



If the chosen model does refute the hypothesis or theory under consideration, we may use it to 

predict the future value(s) of the dependent, or forecast, variable Y on the basis of known or 

expected future value(s) of the explanatory, or predictor variable X.  

Macroeconomic theory shows, the change in income following change in investment 

expenditure is given by the income multiplier M.  

MPC
M




1
1

 

The quantitative estimate of MPC provider valuable information for policy purposes knowing 

MPC, one can predict the future course of income, consumption expenditure, and employment 

following a change in the government’s fiscal policies.  

 

8. Use of the Model for control or Policy purpose  

 

Economic theory 

Mathematical model of theory 

Economic model of theory 

      Dates 

Estimation of economic model 

Hypothesis testing 

Forecasting or prediction 

Using the model for control or policy purpose 

 

Note:  
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 Milton Friedmen has developed a model of consumption theory permanent income 

hypothesis.  

 Robert Hall has developed a model of consumption as life cycle permanent income 

hypothesis  

 

1.4 Types of Econometrics 

Econometrics 

 

Theoretical      Applied  

 

Classical   Bayesian   Classical  Bayesian  

 Theoretical econ is concerned with the development of appropriate methods of 

measuring economic relationship specified by economic models. 

 Applied econ uses the tool of theoretical econ to study some special fields of eco and 

business, such as production function etc.  

 

1.5  SUMMARY AND CONCLUSIONS: 

Econometrics is an amalgam of economic theory, mathematical economics, economic 

statistics, and  mathematical statistics. Yet the subject deserves to be studied in its own right 

for the following reasons. 

Economic theory makes statements or hypotheses that are mostly qualitative 

in nature. For example, microeconomic theory states that, other things remaining the same, a 

reduction in the price of a commodity is expected to increase the quantity demanded of that 

commodity. Thus, economic theory postulates a negative or inverse relationship between the 

price and quantity demanded of a commodity. But the theory itself does not provide any 

numerical measure of the relationship between the two; that is, it does not tell by how much 



the quantity will go up or down as a result of a certain change in the price of the commodity. It 

is the job of the econometrician to provide such numerical estimates. Stated differently, 

econometrics gives empirical content to most economic theory. 

The main concern of mathematical economics is to express economic theory in mathematical 

form (equations) without regard to measurability or empirical verification of the theory. 

Econometrics, as noted previously, is mainly interested in the empirical verification of 

economic theory. As we shall see, then econometrician often uses the mathematical equations 

proposed by the mathematical economist but puts these equations in such a form that they lend 

themselves to empirical testing. And this conversion of mathematical into econometric 

equations requires a great deal of ingenuity and practical skill. 

 

1.6 LETS SUM IT UP : 

In last ,we can say that the subject of econometrics deals with the economic measurement . 

And further, it is  defined as the social science in which the tools of economic theory, 

mathematics, and statistical inference are applied to the analysis of economic phenomena. It  is 

also  concerned with the empirical determination of economic laws 

1.7 EXCERCISES: 

   

Q.1What do mean by Econometrics? 

Q.2 Explain the various steps involved in the methodology of          Econometrics? 

Q.3What are the various types of Econometrics? 

Q.4 How Econometrics can be used as a tool for forcasting and prediction? 

Q.5What is Theoretical Econometrics? 

Q.6 What is Applied Econometrics? 

1.8 Suggested Reading / References: 

1. Baltagi, B.H.(1998). Econometrics, Springer,  New York. 



2.1 Introduction: 

The term regression was introduced by Francis Galton. In a famous paper, Galton found that, 

although there was a tendency for tall parents to have tall children and for short parents to have 

short children, the average height of children born of parents of a given height tended to move 

or “regress” toward the average height in the population as a whole.1 In other words, the 

height of the children of unusually tall or unusually short parents tends to move toward the 

average height of the population. Galton’s law of universal regression was confirmed by his 

friend Karl Pearson, who collected more than a thousand records of heights of members of 

family groups.2 He found that the average height of sons of a group of tall fathers was less 

than their fathers’ height and the average height of sons of a group of short fathers was greater 

than their fathers’ height, thus “regressing” tall and short sons alike toward the average height 

of all men. In the words of Galton, this was “regression to mediocrity.” 

 

2.1.1 THE MODERN INTERPRETATION OF REGRESSION 

 

The modern interpretation of regression is, however, quite different. Broadly speaking, we may 

say Regression analysis is concerned with the study of the dependence of one variable,the 

dependent variable, on one or more other variables, the explanatory variables,with a view to 

estimating and/or predicting the (population) mean or average value of the former in terms of 

the known or fixed (in repeated sampling) 

values of the latter. 

2.2 Objectives: 

1. The key objective behind regression analysis is the statistical dependence of one variable, 

the dependent variable, on one or more other variables, the explanatory variables. 

 

2. The objective of such analysis is to estimate and/or predict the mean or average value of the 

dependent variable on the basis of the known or fixed values of the explanatory variables. 

 

UNIT - II



3. In practice the success of regression analysis depends on the availability of the appropriate 

data. 

 

4. In any research, the researcher should clearly state the sources of the data used in the 

analysis, their definitions, their methods of collection, and any gaps or omissions in the data as 

well as any revisions in the data.  

 

5. The data used by the researcher are properly gathered and that the computations and analysis 

are correct. 

  

2.3 WHAT IS REGRESSION ANALYSIS: 

Under single regression model one variable, called the dependent variable is expressed as a 

linear function of one or more other variable, called explanatory variable.  

2.3.1 TWO VARIABLE REGRESSION MODEL ANALYSIS: 

That means a function has only one dependent variable and only one independent variable.  

Two variable or bivariate  

Means regression in which the dependent variable (the regressand) is related to a single 

explanatory variable (the regression).   

When mean values depend upon conditioning (variable X) is called conditional expected 

value. Regression analysis is largely concerned with estimating and/or predicting the 

(population) mean value of the dependent variable on the basis of the known or fixed values of 

the explanatory variable (s).  



 

To understand this, consider the data given in the below table. The data in the table refer to a 

total population of 60 families in a hypothetical community & their weekly income (X) and 

weekly consumption expenditure (Y), both in dollars. The 60 families are divided into 10 

income groups (from $80 to $260) and the weekly expenditures of each family in the various 

groups are as shown in the table. Therefore, we have 10 fixed values of X and the 

corresponding Y values against each of the X values; and hence there are 10 Y subpopulations. 

There is considerable variation in weekly consumption expenditure in each income group, 

which can be seen clearly but the general picture that one gets is that, despite the variability of 

weekly consumption expenditure within each income bracket, on the average, weekly 

consumption expenditure increases as income increases. To see this clearly, in the given table 

we have given the mean, or average, weekly consumption expenditure corresponding to each 

of the 10 levels of income. Thus, corresponding to the weekly income level of $80, the mean 

consumption expenditure is $65, while corresponding to the income level of $200, it is $137. 

In all we have 10 mean values for the 10 subpopulations of Y. We call these mean values 

conditional expected values, as they depend on the given values of the (conditioning) variable 

X. Symbolically, we denote them as E(Y | X), which is read as the expected value of Y given 

the value of X. 



fig.: Conditional distribution of expenditure for various levels of income 

 

It is important to distinguish these conditional expected values from the unconditional 

expected value of weekly consumption expenditure, E(Y). If we add the weekly consumption 

expenditures for all the 60 families in the population and divide this number by 60, we get the 

number $121.20 ($7272/60), which is the unconditional mean, or expected, value of weekly 

consumption expenditure, E(Y); it is unconditional in the sense that in arriving at this number 

we have disregarded the income levels of the various families. Obviously, the various 

conditional expected values of Y given in given table are different from the unconditional 

expected value of Y of $121.20. When we ask the question, “What is the expected value of 

weekly consumption expenditure of a family,” we get the answer $121.20 (the unconditional 

mean). But if we ask the question, “What is the expected value of weekly consumption 

expenditure of a family whose monthly income is, differently, if we ask the question, “What is 

the best (mean) prediction of weekly expenditure of families with a weekly income of $140,” 

the answer would be $101. Thus the knowledge of the income level may enable us to better 

predict the mean value of consumption expenditure than if we do not have that knowledge. 

This probably is the essence of regression analysis, as we shall discover throughout this text. 



The dark circled points in figure show the conditional mean values of Y against the various X 

values. If we join these conditional mean values, we obtain what is known as the population 

regression line (PRL), or more generally, the population regression curve. More simply, it is 

the regression of Y on X. The adjective “population” comes from the fact that we are dealing in 

this example with the entire population of 60 families. Of course, in reality a population may 

have many families.  

Geometrically, then, a population regression curve is simply the locus of the conditional means 

of the dependent variable for the fixed values of the explanatory variable(s). More simply, it is 

the curve connecting the means of the subpopulations of Y corresponding to the given values 

of the regressor X. It can be depicted as in figure.  

  

 

Fig.: Population Regression line. 

This figure shows that for each X (i.e., income level) there is a population of Y values (weekly 

consumption expenditures) that are spread around the (conditional) mean of those Y values. 



For simplicity, we are assuming that these Y values are distributed symmetrically around their 

respective (conditional) mean values. And the regression line (or curve) passes through these 

(conditional) mean values. 

 

Concept of Population Regression function (PRF) Or Conditional Expectation function 
 

)()/( ii xfXY   

)( iXf
  

:  Some function of the explanatory variable X  

)/( iXY
 

:  Linear function of Xi 

ii XXY 21)/(    

21 &  are unknown but fixed parameters known as the regression coefficients are also known 

as intercept and slope coefficient.  

In regression analysis our interest is in estimating the PRFs.  

 

2.3.2 ESTIMATION THROUGH OLS 

Properties of OLS: 

1) Our estimation are expressed solely in term of observatory can be easily complete.  

2) They are point estimation.  

3) Once OLS estimation is obtained from the sample data. The sample regression line can 

be easily obtained.   

)()xx( 2i21i10 ii ubbbY   

Assumptions of Model  



1) Variable u is real random variable.  

2) Homoscedasticity   

22
1)( uE  

3) Normality of u  

 ),(~ 2
0ONu  

4) Non auto correlation  

 jiuuuE ji )(  

5) Zero mean of u 

 0)( iuE  

6) Independence of iu  and Xi.  

 0)X()/( 2i1  iii uExuE  

7) No perfect multicollinear X’s  

8) No error of measurement in the X’s.  

Estimation through OLS 
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Sq. them we get variation of deviation  

𝑢̂ = (𝑌𝑖 − 𝑌̂𝑖)2  

2
îu = (𝑌𝑖 − 𝑌̂𝑖)

2  

2
îu = ∑( i21 Xˆˆ iY )2  

𝛿
2
îu  

𝛿𝛽1
= 2 ∑( i21 Xˆˆ iY ) = 0  

∑ 𝑌𝑖 = ∑( i21 Xˆˆ   )                             

∑ 𝑌𝑖 = 𝑛 i21 Xˆˆ        n= sample size 

𝛿
2
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𝛿𝛽2
= 2 ∑( i21 Xˆˆ iY )(𝑋𝑖) = 0  

𝑋𝑖 ∑( i21 Xˆˆ iY ) = 0  

∑ 𝑋𝑖 𝑌𝑖 = 𝑋𝑖 ∑( i21 Xˆˆ   )  

∑ 𝑋𝑖 𝑌𝑖 = 2
i21 Xˆˆ  iX   

Note:- We are not taking n 2  because one variable X1 is already percent. So no need for n, 

co2 they are one & the same. 

(LRM) = Classical linear regression Modes) Normal equation  is dependent upon X. X is 

independent.) 
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2.4 SUMMARY AND CONCLUSIONS: 

 

1. The key concept underlying regression analysis is the concept of the conditional 

expectation function (CEF), or population regression function (PRF). Our objective in 

regression analysis is to find out how the average value of the dependent variable (or 

regressand) varies with the given value of the explanatory variable (or regressor). 

 



2. This lesson largely deals with linear PRFs, that is, regressions that are linear in the 

parameters. They may or may not be linear in the regressand or the regressors. 

 

3. For empirical purposes, it is the stochastic PRF that matters. The stochastic disturbance 

term ui plays a critical role in estimating the PRF. 

 

4. The PRF is an idealized concept, since in practice one rarely has access to the entire 

population of interest. Usually, one has a sample of observations from the population. 

Therefore, one uses the stochastic sample regression function (SRF) to estimate the PRF. 

 

2.5  Lets sum it up: 

 

In the concluding remarks, we can say that regression analysis is concerned with the study of 

the dependence of one variable, the dependent variable, on one or more other variables, the 

explanatory variables, with a view to estimating and/or predicting the (population) mean or 

average value of the former in terms of the known or fixed (in repeated sampling values of the 

latter. If we are studying the dependence of a variable on only a single explanatory variable, 

such as that of consumption expenditure on real income, such a study is known as simple, or 

two-variable, regression analysis. However, if we are studying the dependence of one 

variable on more than one explanatory variable, as in the crop-yield, rainfall, temperature, 

sunshine, and fertilizer examples, it is known as multiple regression analysis. In other words, 

in two-variable regression there is only one explanatory variable, whereas in multiple 

regression there is more than one explanatory variable. 

 

2.6 Excercise: 

 

1. What is the conditional expectation function or the population regression function? 

 

2. What is the difference between the population and sample regression functions? Is this a 

distinction without difference? 



 

3. What is the role of the stochastic error term ui in regression analysis? What is the difference 

between the stochastic error term and the residual, ˆui? 

 

4. Why do we need regression analysis? Why not simply use the mean value of the regressand 

as its best value? 

 

5. What do we mean by a linear regression model? 
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3.1 Introduction: 

To estimate the population regression function (PRF) on the basis of the sample regression 

function (SRF) as accurately as possible, we will discuss two generally used methods of 

estimation: 

 (1) Ordinary least squares (OLS) and 

 (2) Maximum likelihood (ML).  

By and large, it is the method of OLS that is used extensively in regression analysis primarily 

because it is intuitively appealing and mathematically much simpler than the method of 

maximum likelihood. Besides, as we will show later, in the linear regression context the two 

methods generally give similar results. 

3.2 Objectives: 

1. The key  objective is to find the the least-squares estimators, in the class of unbiased linear 

estimators, have minimum variance, that is, they are BLUE. 

 

2. The goodness of fit of the fitted regression line to a set of data; that is, we  shall find out 

how “well” the sample regression line fits the data . 

3.3 Gauss-Markov Theorem/Blue: 

The least-squares estimates possess some ideal or optimum properties, 

these properties are contained in the well-known Gauss–Markov 

theorem. To understand this theorem, we need to consider the best linear 

unbiasedness property of an estimator. 

                   BLUE: - Best Linear-Unbiased Estimator.  

                   MVUE: - Minimum Variance unbiased Estimator. 

- If in BLUE, L is not there, because Linearity in co-effects are required not in X &Y. 

The properties if Least-Square are known as the BLUE. 

3.3.1 Properties 

PROPERTIES OF LEAST - SQUARES ESTIMATOR



1. It is linear i.e. a linear function of a random variable such as the dependent variable Y 

in the regression model. 

2. It is unbiased i.e its average value, )ˆ( 2E , is = true value of 2. 

3. Has minimum variance in class of all linear unbiased estimators. 

(Note:- An unbiased estimator with the least variance is known as an efficient variable.) 

3.3.2 Gauss Theorm:- Give the assumption of the classical linear regression Model the least 

squares estimators; in the class of unbiased linear estimator have minimum variance, that is 

they are BLUE. 

a) The mean of the 2̂ values. )ˆ( 2EC is equal to the true value of 2. 2̂ is an unbiased 

estimator.  

                                    

b) 

 Sample distribution of 2 , an alternative estimator of 2.  

 2̂ & 
*
2 . are linear estimators that is they are linear function of Y. 

 𝛽2
*  like 𝛽2 is unbiased that is, its average or expected value is equal to 𝛽2. 



                                

c) The variance of 
*
2 is larger than the variance of 2̂ .One would choose the BLUE 

estimator 

                                     

G.M. Theorem makes no assumption about the probability distribution of the random variable 

ui and therefore of Yi. 

 As long as the assumption of CLRM are satisfied, the theorem holds. 

 If any of the assumption doesn't hold, the theoram is invalid. 

3.4 Derivation of R2 

Coefficient of determination ( r2 ). 

 A measure of "Goodness of fit" 

 Goodness to fit of the fitted regression line fits the data; that is we shall find out how 

will the sample regression line fits the data. 

 The coefficient of determination r2 (Two variable case) or R2 (multiple regression) is a 

sum many measure that tells how will the sample regression line fits the data. 

 



 

 

   (a)       (b) 

  r2 = 0       r2 = 1 

Y = Dependent variable 

X= Explanatory variable 

Greater the extent of the overlap, the greater the variance in Y is explained by X. r2 simply a 

numerical measure of this overlap. 

r2 computation 

,1 ˆˆ uYi   

in the derivation form 

uyyi ˆ1̂  

Squaring both side. 
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TSS = ESS + RSS 

Where a) TSS = Total sum of squares. 

i.e.  Ey2 = (Yi - Y̅)2  

 b) ESS =Estimated sum of squares. 

i.e.  222
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 c) RSS= Residual sum of squares. 
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1 - r2 = 
RSS

TSS
 

r2 = 1 -  
RSS

TSS
 

r2 thus defined is known as the (sample) coefficient of determination and is the most 

commonly used measure of goodness of fit. 



 

 

r2 measure the proportion or % of the two variable in Y explained by regression model. 

3.4.1 Two properties of r2 

1. It is a non negative quantity. 

2. Its limits are 0  r2  1. 

An r2 1 means a perfect fit r2 of 0 means no relation. 

A quantity closely related to but conceptually very much different from r 2 is the coefficient of 

correlation, is a measure of the degree of association between two variables. It can be 

computed from 

                              r = ±√r 2 

 

Some of the properties of r are as follows: 

 



1. It can be positive or negative, the sign depending on the sign of the term in the numerator of, 

which measures the sample covariation of two variables. 

 

2. It lies between the limits of −1 and +1; that is, −1 ≤ r ≤ 1. 

 

3. It is symmetrical in nature; that is, the coefficient of correlation between 

X and Y(rXY) is the same as that between Y and X(rYX). 

 

4. It is independent of the origin and scale; that is, if we define X*i=aXi + C andY*i= bYi + d, 

where a > 0, b > 0, and c and d are constants, then r between X* and Y* is the same as that 

between the original variablesX and Y. 

 

5. If X and Y are statistically independent the correlation coefficient between them is zero; but 

if r = 0, it does not mean that two variables are independent. In other words, zero correlation 

does not necessarily imply independence.  

 

6. It is a measure of linear association or linear dependence only; it has no meaning for 

describing nonlinear relations. 

 

3.5 SUMMARY AND CONCLUSIONS: 

The important topics and concepts developed in this lesson can be summarized as follows. 

 

1. Based on these assumptions, the least-squares estimators take on certain properties 

summarized in the Gauss–Markov theorem, which states that in the class of linear unbiased 

estimators, the least-squares estimators have minimum variance. In short, they are BLUE. 

 

2. The precision of OLS estimators is measured by their standard errors. 

 



3.  The overall goodness of fit of the regression model is measured by the coefficient of 

determination, r 2. It tells what proportion of the variation in the dependent variable, or 

regressand, is explained by the explanatory variable, or regressor. This r 2 lies between 0 and 

1; the closer it is to 1, the better is the fit. 

 

4. A concept related to the coefficient of determination is the coefficient of correlation, r. It is a 

measure of linear association between two variables and it lies between −1 and +1. 

 

3.6 LETS SUM IT UP: 

In last we can say that to find the the least-squares estimators, in the class of unbiased linear 

estimators, have minimum variance, that is, they are BLUE we can use the Gauss–Markov 

theorem and the coefficient of determination r 2 (two-variable case) or R2 (multiple 

regression) is a summary measure that tells how well the sample regression line fits the data. 

The coefficient of determination helps in  finding the goodness of fit of the fitted regression 

line to a set of data; that is, we shall find out how “well” the sample regression line fits the 

data. 

 

3.7 EXCERCISES: 

Q.1 State and prove Gauss Markov theorem. 

Q.2 Discuss in detail the difference between PRF and SRF. 

Q.3 Discuss adjusted R square. 

Q.4 What is non spherical error term? 

Q.5 Does it matter if we regress X on Y or Y on X. 

Q.6 Write a short note on statistical versus deterministic relationship. 



Q.7 Prove maximum likelihood estimation of multiple regression model and find  out why ML 

estimator is biased. 

Q.8 In two variable case, first derive the normal equations and then from them find out the 

values of β1 and β2? 
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4.1 INTRODUCTION: 

If our objective is to estimate β1 and β2 only, the method of OLS  will be suffice. But in 

regression analysis our objective is not only to obtain ˆ β1 and ˆ β2 but also to draw inferences 

about the true β1 and β2. For example, we would like to know how close ˆ β1 and ˆ β2 are to 

their counterparts in the population or how close ˆYi is to the true E(Y | Xi). To that end, we 

must not only specify the functional form of the model, but also make certain assumptions 

about the manner in which Yi are generated. To see why this requirement is needed, look at the 

PRF: Yi = β1 + β2Xi + ui . It shows that Yi depends on both Xi and ui . Therefore, unless we 

are specific about how Xi and ui are created or generated, there is no way we can make any 

statistical inference In this lesson, we will study about the various methods through which the 

regression models draw inferences about the various parameters. Basically, there are three 

methods through which we do this:- 

 

1.   The classical linear regression model (CLRM). 

2.   Generalized least square (GLS). 

3.   Maximum Likelihood estimation (ML) 

4.2 OBJECTIVES: 

1. In regression analysis our objective is not only to obtain βˆ1 and βˆ2 but also to draw 

inferences about the true β1 and β2. For example, we would like to know how close βˆ1 and βˆ2 

are to their counterparts in the population or how close Yˆi is to the true E(Y | Xi).  

2. Look at the PRF: Yi = β1 + β2Xi + ui . It shows that Yi depends on both Xi and ui . The 

assumptions made about the Xi variable(s) and the error term are extremely critical to the valid 

interpretation of the regression estimates.  

 

3. Our objective is to first discuss the assumptions in the context of the two-variable regression 

model,we extend them to multiple regression models, that is, models in which there is more 

than one regressor. 

THE CLASSICAL LINEAR REGRESSION MODEL



 

4.3 THE CLASSICAL LINEAR REGRESSION MODEL:  

The assumptions underlying the method of least squares  

The Gaussian, standard, or classical linear regression model (CLRM), which is the 

cornerstone of most econometric theory, makes 10 assumption. 

Assumption 1: Linear regression model. The regression model is linear in the 

parameters, 

i = 1 + 2Xi + ui 

Assumption 2: X values are fixed in repeated sampling. Values taken by the 

regressor X are considered fixed in repeated samples. More technically, X is assumed 

to be nonstochastic.  

Assumption 3: Zero mean value of disturbance ui. Given the value of X, the mean, 

or expected, value of the random disturbance term ui is zero. Technically, the 

conditional mean value of ui, is zero. Symbolically, we have 

E(ui |Xi)= 0 

Assumption 4: Homoscedasticity or equal variance of ui. Given the value of X, the 

variance of ui is the same for all observations. That is the conditional variance of ui, are 

identical. Symbolically, we have 

   var (ui |Xi) = E(ui |Xi)2 

     = E(u
2
𝑖
 |Xi) because of Assumption 3 

     = 2 



Where var stands for variance 

Assumption 5: No autocorrelation between the disturbances. Given any two X 

values, Xi and Xj (ij) the correlation between any two ui and uj (ij) is zero. 

Symbolically 

   Cov (ui ui |Xi,Xj) = E{[ui - E(uj)]| Xi} {[ui - E(uj)]|  Xi) 

     = E(ui |Xi) (uj |Xj)   

     = 0 

Where i and j are two different observation and where cov means covariance. 

Assumption 6: Zero covariance between ui and Xi or E(uiXi) =0 Formally, 

  Cov (ui Xi) = E[ui - E(uj)][Xi - E(xI)] 

    = E[ui (Xi - E(Xi))]  Since E(ui)  = 0 

    = E[uiXi) - E(Xi) E(ui)  Since E(Xi) is nonstochastic 

    = E[uiXi)  Since E(ui) =0 

    = 0 by assumption 

Assumption 7: The number of observation n must be greater than the number of 

parameters to be estimated. Alternatively, the number of observation n must be 

greater than the number of explanatory variables. 

Assumption 8: Variability in X values. The X values in a given sample and not all be 

the same. Technically, var (X) must be a finite positive number. 



Assumption 9: The regression model is correctly model in correctly specified. 

Alternatively, there is no specification bias or error in the model used in empirical 

analysis. 

Assumption 10: There is no perfect multicolinearity. That is, there are no perfect 

linear relationships among the explanatory variable. 

 

4.10  GENERALISED LEAST SQUARE (GLS) 

OLS method doesn't follow this strategy & therefore doesn't make use of the information 

contained in the unequal variability of the dependent variable Y. 

But GLS takes such information into accent explicitly & is therefore capable of producing 

estimators that are BLUE. 
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{Where transformed, variable are that are divided by i}. We use the notation. 

2 heteroscedastic variable 

What is the purpose of transforming the original mode? 

Notice the following feature of the transformed error term *
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This procedure of transforming original variable in such a way that the transformed 

variable satisfy the assumption of the classical model & then apply OLS to then is 

known as the method of GLS. 

In short GLS is OLS on the transformed variables that satisfy the standard last sq. 

assumption. 

 

 

4.11 Maximum Likelihood estimation (ML) 

Assumption 2 variable modes  

1 = 1+ 1Xi u1 

f(Y1Y2……..Yn/ 1+ 2Xi +2) 

= f(Y1 / 1+ 2Xi +2) f(Y2 / 1+ 2Xi +2)……..f (Yn / 1+ 2)   (1) 

When f(Y1)= 
1

𝜎√2𝜋
exp {−

1

2
 

(𝑌𝑖−𝛽1−𝛽1𝑋𝑖)

𝜎2

2
}      (2) 

Exp mean e to the paru of expression indicator by { } 

Y1 are normal  
distributer   



f (Y1) = 
1

𝜎√2𝜋
 𝑒−

1 

2  
(𝑌𝑖−𝛽1+ 𝛽2𝑋𝑖)

𝜎2

2

 

Subtract (2) in (1) 

 f(Y1,Y2,Yn / 1+ 2X1 +2) =
1

𝜎√2𝜋
exp {−

1

2
 (

𝑌𝑖−𝛽1−𝛽1𝑋𝑖

𝜎2 )
2

}    (3) 

Y1, Y2, Yn are known 

But 1 2 & 2 are not. 

f so (3) is known as likelihood function. 

Divided by LF (1,2, 2) 

LF (1,2, 2) = 
1

𝜎√2𝜋
 𝑒 {−

1

2
  (

𝑌𝑖−𝛽1−𝛽1𝑋𝑖

𝜎2
)

2

} 

ML consists in estimating the unknown parameter in such a manner that the probability 

of observe give by Y’s is highest as possible. 

In LF= -n ln-
𝑛

2
ln(2) −  

1

2


(𝑌1−𝛽1+𝛽2𝑋𝑖)2

𝜎2
     (5) 

Differencing (5) parameters with 1,2 & 2 

𝜕𝑚𝐿𝐹

𝜕𝛽1
=  

1

𝜎2
  (Y1 - 1 - 2 Xi) (-1)       (6) 

𝜕𝐿𝑛𝐿𝐹

𝜕𝛽2
=  

1

𝜎2   (Y1 - 1 - 2 Xi) (-X1)      (7) 
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𝜕2
= −

𝑛

𝜎
+  

1

2𝜎4 (Y1 - 1 - 2 Xi)2      (8) 

  



4.6 SUMMARY AND CONCLUSION: 

This four-part course provides students with a basic foundation in econometrics combining 

theoretical underpinnings with practical problems. The first part is a review of the basic 

statistical concepts and matrix algebra. The second part introduces regression analysis: the 

basic idea behind the classical linear regression model (CLRM), the underlying assumptions, 

and the problem of estimation. Building on the two-variable model, it analyses a few 

extensions, the multiple regression model, and the matrix approach to the linear regression 

model. The third part of the course reviews hypothesis testing and interval estimation, both on 

the two-variable and multivariate regression models. The last part of the course analyzes the 

consequences on the estimators from relaxing the assumptions of the classical linear regression 

model, and discusses various remedies. It examines the cases of heteroskedasticity, 

autocorrelation, multicollinearity, non-linearity and non-stationary. 

 

4.7 Lets sum it up: 

In the concluding remarks, we can say that under the assumptions of the classical linear 

regression model (CLRM), we were able to show that the estimators of these parameters, ˆ β1, 

ˆ β2, and ˆσ 2, satisfy several desirable statistical properties, such as unbiasedness, minimum 

variance, etc. (Recall the BLUE property.) And after this by relaxing the assumptions of the 

classical linear regression model, we analyzed the consequences on the estimators.  



4.8 EXCERCISES: 

Q.1 Consider the following formulations of the two-variable PRF: 

                            Model I: Yi = β1 + β2Xi + ui 

                            Model II: Yi = α1 + α2(Xi − .X ) + ui 

a. Find the estimators of β1 and α1. Are they identical? Are their variances identical? 

b. Find the estimators of β2 and α2. Are they identical? Are their variances identical? 

c. What is the advantage, if any, of model II over model I? 

 

Q.2 Let r1 = coefficient of correlation between n pairs of values (Yi , Xi ) and r2 = coefficient 

of correlation between n pairs of values (aXi + b, cYi + d), where a, b, c, and d are constants. 

Show that r1 = r2 and hence establish the principle that the coefficient of correlation is 

invariant with respect to the change of scale and the change of origin. 

 

Q.3 In the regression Yi = β1 + β2Xi + ui suppose we multiply each X value by a constant, say, 

2. Will it change the residuals and fitted values of Y? Explain. What if we add a constant value, 

say, 2, to each X value? 

 

Q.4 Explain with reason whether the following statements are true, false, or uncertain: 

a. Since the correlation between two variables, Y and X, can range from −1 to +1, this also 

means that cov (Y, X) also lies between these limits. 

b. If the correlation between two variables is zero, it means that there is no relationship 

between the two variables whatsoever. 

c. If you regress Yi on ˆYi (i.e., actual Y on estimated Y), the intercept and slope values will be 

0 and 1, respectively. 

 

Q.5 Regression without any regressor. Suppose you are given the model: Yi = β1 + ui . Use 

OLS to find the estimator of β1. What is its variance and the RSS? Does the estimated β1 make 

intuitive sense? Now consider the two-variable model Yi = β1 + β2Xi + ui . Is it worth adding 

Xi to the model? If not, why bother with regression analysis? 
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1.1 INTRODUCTION: 

 In regression analysis specification is the process of developing a regression model. This 

process consists of selecting an appropriate functional form for the model and choosing which 

variables to include. As a first step of regression analysis, a person specifies the model. If an 

estimated model is misspecified, it will be biased and inconsistent. 

 Specification error occurs when an independent variable is correlated with the error term. 

There are several different causes of specification error: 

 incorrect functional form 

 a variable omitted from the model may have a relationship with both the dependent 

variable and one or more of the independent variables (omitted-variable bias);[2] 

 an irrelevant variable may be included in the model 

 the dependent variable may be part of a system of simultaneous equations (simultaneity 

bias)measurement errors may affect the independent variables 

One of the assumptions of the classical linear regression model (CLRM) Assumption 9, is that 

the regression model used in the analysis is “Correctly” specified: If the model is not 

“Correctly” specified, we encounter the problem of model specification error or model 

specification bias. In this lesson we take a close and critical look at this assumption, because 

searching for the correct model is like searching for the Holy Grail. 

1.2 OBJECTIVES: 

1. Understand the model selection criteria for empirical analysis. 

2. Understand  the specification errors. 

3 Understand the consequences of  model specification errors on OLS estimates. 

MODEL SPECIFICATION



4. Detect specification errors through formal econometric tests. 

5. Distinguish among the wide range of available tests for detecting specification errors. 

1.5 MODEL SELECTION CRITERIA: 

According to Hendry and Richard, model chosen for empirical analysis should satisfy the 

following criteria; 

1. Be data admissible: that is, predictions made from the model must be logically 

possible. 

2. Be consistent with theory; that is, it must make good economic sense. For example, if 

Milton Friedman’s permanent income hypothesis holds, the intercept value in the 

regression of permanent consumption on permanent income is expected to be zero. 

3. Have weakly exogenous regressors; that is, the explanatory variables, or regressors, 

must be uncorrelated with the error term. 

4. Exhibit parameter constancy: that is, the value s of the parameters should be stable. 

Otherwise, forecasting will be difficulty. As Friedman notes, “The only relevant test of 

the validity of a hypothesis (Model) is comparison of its predictions with experience.” 

In the absence of parameter constancy, such predictions will not be reliable. 

5. Pure Random: Exhibit data coherency; that is, the residual estimated from the model 

must be purely random (technically, white noise). In other words, if the regression 

model is adequate, the residuals from this model must be white noise. If that is not the 

case, there is some specification error in the model. Shortly, we will explore the nature 

of specification error(s). 

6. Be encompassing: that is the model should encompass or include all the rival models in 

the sense that it is capable of explaining their results. In short, other models cannot be 

an improvement over the chosen model. 

 

1.6 TYPES OF SPECIFICATION ERRORS 



Assume that on the basis of the criteria just listed we arrive at the model that we accept 

as a good model. To be concrete, let this model be 

 iiiii uXXXY 2
3

4
2

321     (1) 

Where  Y = total cost of production and X=output. Equation (1) is the familiar text 

book example of the cubic total cost function,. 

But suppose for some reason (say, laziness in plotting the scatter gram) a researcher 

decides to use the following model: 

 iiii uXXY 2
2

321      (2) 

Note that we have changed the notation to distinguish this model from the true model. 

Since (1) is assumed true, adopting (2) would constitute a specification error, the error 

consisting in omitting a relevant variable( 3
iX ). Therefore, the error term u2i. In (2) is in 

fact 

 3
42 ilii Xuu      (3) 

We shall see shortly the importance of this relationship. 

Now suppose that another researcher uses the following model; 

 iiiiii uXXXXY 3
4

5
3

4
2

321     (4) 

If (1) is the “Truth,” (4) also constitutes a specification error, the error here consisting 

in including an unnecessary or irrelevant variable in the sense that the true model 

assumes 5To be zero. The new error term is in fact 

 4
513 iii Xuu       (5) 

  =uli Since 5= 0 in the true model. 

Now assume that yet another researcher postulates the following mode: 

 In iiiii uXXXY 4
3

4
2

321      (6) 

In relation to the true model, (6) would also constitute a specification bias, the bias here 

being the use of the wrong functional form:  In (1) Y appears linearly, whereas in (6) it 

appears log-olinearly. 



Finally, consider the researcher who uses the following model: 

 *3**
4

2**
3

**
2

**
iiiiii uXXXY     (7) 

Where Y*
i = Yi+i and X*

i = Xi + wi, i and wi Being the errors of measurement. What 

(7) states is that instead of using the true Yi And Xi we use their proxies, *
iY and *

iX  

Which may contain errors of measurement. Therefore, in (7) we commit the errors of 

measurement bias. In applied work data are plagued by errors of approximations or 

errors of incomplete coverage or simply errors of omitting some observations. In the 

social sciences we often depend on secondary data and usually have no way of knowing 

the types of errors, if any, made by the primary data-collecting agency. 

Another type of specification error relates to the way the stochastic error i (or t) 

enters regression model. Consider for instance, the following bivariate regression 

model without the intercept term; 

 Yi = XiuI   (8) 

Where the stochastic error term enters multiplicatively with the property that.  satisfies 

the assumptions of the CLRM, against the following model 

 Yi = Xi + ui   (9) 

Where the error term enters additively. Although the variables are the same in the two 

models, we have denoted the slope coefficient in (8) by 𝛽 and the sple coefificient in 

(9) by  Now if (8) is the “correct” or “true” model, would the estimated   provide an 

unbiased estimate of the true 𝛽2 That is, will  )ˆ (E  If that is not the case, improper 

stochastic specification of the error term will constitute another source of specification 

error.  

To sum up, in developing an impirical model, one is likely to commit one or more of 

the following specification errors: 

1. Omission of a relevant variable(s) 

2. Inclusion of an unnecessary variable(s) 



3. Adopting the wrong functional form 

4. Errors of measurement 

5. In correct specification of the stochastic error term 

Before turning to an examination of these specification errors in some detail, it may be 

fruitful to distinguish between model specification errors and model mis-specification 

errors. The first four types of error discussed above are essentially in the nature of 

model specification errors in that we have in mind a ‘true” model but somehow we 

donot estimate the correct model. In model mis-specification errors, we do not know 

what the true model is to begin with. In this context one may recall the controversy 

between the Keynesians and the monetarists. The monetarists give primacy to money in 

explaining changes in GDP, whereas the Keynesians emphasize the role of government 

expenditure to explain changes in GDP. So to speak there are two competing models. 

In what follows, we will first consider model specification errors and then examine 

model mis-specification errors. 

 

1.5  CONSEQUENCES OF  MODEL SPECIFICATION ERRORS 

Whatever the sources of specification errors, what are the consequences? To keep the 

discussion simple, we will answer this question in the context of the three-variable 

model and consider in this section the first two types of specification errors discussed 

earlier, namely (1) underfitting a model, that is, omitting relevant variables, and (2) 

overfitting a model, that is, including unnecessary variables. Our discussion here can be 

easily generalized to more than two regressors, but with tedious algebra.., matric 

algebra becomes almost a necessity once we go beyond the three variable case. 

1.5.1 Underfitting a Model (Omitting a Relevant Variable) 

 Suppose the true model is  

 Yi = 1 + 2X2i + 3X3i + ui 



But for some reason we fit the following model: 

 Yi = 1 + 2X2i + vi 

The consequences of omitting variable X3 are as follows: 

1. If the left-out, or omitted, variable X3 is correlated with the included variable X2 

that is r23, the correlation coefficient between the two variables is nonzero, 

21 ˆˆ and are basied as well as inconsistent. That is 11)ˆ(  E  and 22)ˆ(  E the 

bias does not disappear as the sample size get larger. 

2. Even if X2 and X3 are not correlated 1̂  although 2̂ is now unbiased. 

3. The disturbance variance 2 is incorrectly estimated. 

4. The conventionally measured variance 2
2

2
1 /(ˆ ix  is a biased estimator of the 

variance of the true estimator 1̂  

5. In consequence, the usual confidence interval and hypothesis-testing procedures 

are likely to give misleading conclusions about the statistical significance of the 

estimated parameters. 

6. As another consequence, the forecasts based on the incorrect mode l and the 

forecast (confidence) intervals will be unreliable. 

 

 32322)ˆ( bE    

Where b32is the slope in the regression of the excluded variable X3 on the included 

variable X2(b32 = 𝑥3𝑖𝑥2𝑖/ 𝑥2𝑖
2 ). As shows, 2̂  is biased, unless 3 and 32 or both are 

zero. We rule out 3 being zero, because in that case we do not have specification error 

to being with. The coefficient 32 will be zero if X2 and X3 are uncorrelated, which is 

unlikely in most economic data. 

Now let us examine the variances of 2̂ and 2̂    



Var( 2̂ ) =
2

𝑥2𝑖
2  

var( 2̂ ) = 
2

𝑥2𝑖
2 (1−r23

2 )
=  

2

𝑥2𝑖
2 VIF 

Where VIF (a measure of collinearity) is the variance inflation factor [=1/(1-𝑟23
2 )] is the 

correlation coefficient between variable X2 and X3. 

1.5.2 INCLUSION OF AN IRRELEVANT VARIABLE (OVERFITTING A 

MODEL) 

Now let us assume that 

 Yi = 1 + 2X2i +ui 

Is the truth, but we fit the following model. 

 Yi = 1 + 2X2i + 3X3i +ui 

And thus commit the specification error of including an unnecessary variable in the 

model. 

The consequences of this specification error are as follows: 

1. The OLS estimators of the parameters of the “incorrect” model are all unbiased 

and consistent, that is E(1) = 1, )ˆ( 2E =  2,and )ˆ( 3E = 3 =0 

2. 2. The error variance 2 Is correctly estimated. 

3. The usual confidence interval and hypothesis-testing procedures remain valid. 

4. However, the estimated 's will be generally inefficient, that is, their variances 

will be generally larger than those of the s'̂ of the true model.  

From the usual OLS formula we know that  



 Var ( 2̂ ) =
2

𝑥2𝑖
2  

and  Var( 2̂ ) =
2

𝑥2𝑖
2 (1−r23

2 )
 

Therefore 
Var( 2̂ )

var( 2̂ ) 

=  
1

1−r23
2  

Since 0  r23
2 1, it follows that    22

ˆvarˆ   ; that is, the variance of 2̂ is generally 

greater than the variance of 2̂  even though, on average 2̂ = 2̂ . 

The implication of this finding is that the including of the unnecessary variable X3 

makes the variance of 2̂ larger than necessary, thereby making 2̂ less precise. This is 

also true of 1̂  

 

1.6  TESTS OF SPECIFICATION ERRORS 

1.6.1 Detecting the presence of unnecessary variables (Over fitting a model) 

Suppose we develop a K-variable model to explain a phenomenon: 

 Yi = 1 + 2X2i +………….+kXki + ui 

 However, we are not totally sure that, say, the variable Xk really belongs in the 

model. One simple way to find this out is to test the significance that we are not sure 

whether, say k with the usual t test: t= )ˆ(/ˆ
kk se  But suppose that we are not sure 

whether, say, X3 and X4 legitimately belong in the model. This can be easily 

ascertained by the F test. Thus, detecting the presence of an irrelevant variable(or 

variables) is not a difficult task. 

 It is, however, very important to remember that in carrying out these tests of 

significance we have a specific model in mind. We accept that model as the maintained 



hypothesis or the “truth,” however tentative it may be. Given that model, then, we can 

find out whether one or more regressors are really relevant by the usual t and f tests. 

But note carefully that we should not use the t and f tests to build a model iteratively, 

that is, we should not say that initially Y is related to X2 only because 2̂ is statistically 

significant and then expand the model to include X3 and decide to keep that variable in 

the model if 3̂  turns out to be statistically significant, and so on. This strategy of 

building  model is called the bottom-up approach (starting with a smaller model and 

expanding it as one goes along) or by the somewhat pejorative term, data mining (other 

names are regression fishing, data grubbing, data snooping , and number crunching). 

 

1.6.2 Tests for Omitted Variables and incorrect functional form 

In practice we are never sure that the model adopted for empirical testing is “the truth, 

the whole truth and nothing but the truth.” On the basis of theory or introspection and 

prior empirical work, we develop a model that we believe captures the essence of the 

subject under study. We then subject the model to empirical testing. After we obtain the 

results, we being the post mortem, keeping in mind the criteria of a good model 

discussed earlier. It is at this stage that we come to know if the chosen model is 

adequate. In determining model adequacy, we look at some broad features of the 

results, such as the R2 value, the estimated coefficients in relation to their prior 

expectations, the Durbin-Watson statistic, and the like. If these diagnostics are 

reasonably good, we proclaim that the chosen model is a fair representation of reality. 

By the same token, if the results do not look encouraging because the R2 value is too 

low or because very few coefficients are statistically significant or have the correct 

signs or because the Durbin-Watson d is too low, then we being to worry about model 

adequacy  and look for remedies. May we have omitted an important variable, or have 



used the wrong functional form, or have not first differenced the time series (to remove 

serial correlation), and so on. 

1.6.3 The Durbin-Watson d Statistics Once Again.  

If we examine the routinely calculated Durbin-Watson d we see that for the linerar cost 

function the estimated d suggesting that there is positive “correlation” in the estimated 

residuals: for n = 10 and k' = 1 and then 5 percent d critical value are dL Liewise, the 

computed value for the quadratic cost function is 1..38, whereas the 5 percent critical 

values are dL = 0.697 and DU= 1.641, indicating indecision. But if we use the modified 

d test we can say that there is positive “correlation” in the residuals, for the computed d 

is less than dU. For the cubic cost function, the true specification, the estimated d value 

does not indicate any positive “correlation” in the residuals. 

The observed positive “correlation” in the  residuals when we fit the linear or quadratic 

model is not a measure of (first oder) serial correlation but of fact that some variable(s) 

that belong in the modeol are included in the error term and need to be culled out from 

it and introduced in their own right as explanatory variables: If we exclude the 𝑥1
3from 

the cost function, the error term in the mis-specified model is in fact (
𝑙𝑖

+  𝛽4𝑋1
3and it 

will exhibit a systematic pattern (e.g. positive autocorrelation) if 𝑋1
3in fact affects Y 

significantly. 

To use the Durbin-Watson test for detecting model specification error(s), we proceed as 

follows 

1. From the assumed mode, obtain the OLS residuals. 

2. If it is believed that the assumed model is mis-specified because it excludes a 

relevant explanatory variable, say, Z from the model, order the residuals 

obtained in Step 1 according to increasing values of Z. Note: The Z variable 



could be one of the x variables included in the assumed model or it could be 

some function of that variable, such as X2 and X3. 

3. Compute the d statistic from the residuals thus ordered by the usual d formula, 

namely 
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Note: The subscript t is the index of observation here and does not necessarily mean 

that the date are time series. 

4. From the Durbin-Watson tables, if the estimated d value is significant, then one 

can accept the hypothesis of model mis-specification. If that turns out to be the 

case, the remedial measures will naturally suggest themselves. Ramsey’s Reset 

Test. Ramsey has porposed a general test of specification error called RESET 

(regression specification error test0. Here we will illustrate only the simplest 

version of the test. To fix ideas, let us continue with out cost-output example that 

the cost function is linerar in output as. 

Yi = 1 + 1Xi + 3i 

Where Y= total cost and X= output. Now if we plot the residuals î  obtained from this 

regression against iŶ the estimated Yi from this model, we get the picture shown in 

figure Although i̂ and iiŶ̂ are necessarily zero.  

 

 

 

 



the residuals in this figure show a pattern in which theirmean changes systematically 

with iŶ. This would suggest that if we introduce iŶin some form as regressor (s), it 

should increase R2. And if the increase in, R2 is statistically significant (on the basis of 

the F test discussed in previous Lesson), it would suggest that the liner cost function 

was mis-specified. This sis essentially the idea behind RESET. The steps involved in 

RESET are as follow: 

1. From the chosen model, obtain the estimated Yi, that is .1̂Y  

Yi = 1 + 2Xi + u3i 

2. Rerun (13.4.6) introducing 1̂Y in some form as an additional regressor(s). From 

Figure ,we observe that there is a curvilinear relationship between i̂ and iŶ . 

Suggesting that one can introduce 32 ˆˆ
ii YandY as additional regressors Thus, we run. 

 Yi = iiii uYYX  3
4

2
321

ˆˆ   

3. Let the R2 obtained from be R2
new and that obtained from be R2

old Then we can 

use the F test first introduced in namely. 

F= 
(Rnew

2 − Rold
2 )/number  of regressors

(1−Rnew
2 )/(n−number of parametres in the new model

 

to find out if the increase in R2 from using is statistically significant. 

4. Lagrange Multiplier (LM) Test for Adding Variables. This is an alternative 

to Ramsey’s RESET test. To illustrate this test, we will continue with the 

preceding illustrative example. 

If we compare the linear cost function with the cubic cost function the former is a 

restricted version of the latter.The restricted regression assumes that the coefficients of 

the squared and cubed output terms are equal to zero. To test this, the LM test proceeds 

as follows; 

1. Estimate the restricted regression by OLS and obtain the residuals 𝑢̂𝑖. 



2. If in fact the unrestricted regression is the true regression the residuals obtained 

in should be related to the squared and cubed output terms, that is 𝑋𝑖
2and 𝑋𝑖

3 

3. This suggests that we regress the 𝑢̂𝑖obtained in Step 1 on all the 

regressors(including those in the restricted regression) which in the present case 

means. 

𝑢̂𝑖 = 1 + 2Xi + 3𝑋𝑖
2 + 4𝑋𝑖

3
 + i 

Where v is an error term with the usual properties. 

4. For large-sample size, Engle has shown that n(the sample size0 times the R2 

Estimated from the (auxiliary) regression follows the chisquare distribution with 

df equal to the number of resrtrictions imposed by the restricted regression, two 

in the present example since the terms 𝑋𝑖
2 and 𝑋𝑖

3are dropped from  the model. 

Symbolically, we write. 

nR2 

𝑎𝑠𝑦
X2

(number of restrictions)  

Where as Y means asymptotically, that is, in large samples. 

5. If the chi-square value obtained from exceeds the critical chi-square value at the 

chosen level of significant, we reject the restricted regression. Otherwise, we do 

not reject it. 

 

1.7 SUMMARY AND CONCLUSIONS: 

1. The assumption of the CLRM that the econometric model used in analysis is correctly 

specified has two meanings. One, there are no equation specification errors, and two, there are 

no model specification errors. In this lesson the major focus was on equation specification 

errors. 

 



2. The equation specification errors discussed in this lesson were 

(1) omission of important variable(s), (2) inclusion of superfluous variable(s), (3) adoption of 

the wrong function form, (4) incorrect specification of the error term ui, and (5) errors of 

measurement in the regressand and regressors. 

3. When legitimate variables are omitted from a model, the consequences can be very serious: 

The OLS estimators of the variables retained in the model not only are biased but are 

inconsistent as well. Additionally, the variances and standard errors of these coefficients are 

incorrectly estimated, thereby vitiating the usual hypothesis-testing procedures. 

4. The consequences of including irrelevant variables in the model are fortunately less serious: 

The estimators of the coefficients of the relevant as well as “irrelevant” variables remain 

unbiased as well as consistent, and the error variance σ2 remains correctly estimated. The only 

problem is that the estimated variances tend to be larger than necessary, thereby making for 

less precise estimation of the parameters. That is, the confidence intervals tend to be larger 

than necessary. 

5. To detect equation specification errors, we considered several tests, such as (1) examination 

of residuals, (2) the Durbin–Watson d statistic, (3) Ramsey’s RESET test, and (4) the Lagrange 

multiplier test. 

6. A special kind of specification error is errors of measurement in the values of the regressand 

and regressors. If there are errors of measurement  in the regressand only, the OLS estimators 

are unbiased as well as consistent but they are less efficient. If there are errors of measurement 

in the regressors, the OLS estimators are biased as well as inconsistent. 

7. Even if errors of measurement are detected or suspected, the remedies are often not easy. 

The use of instrumental or proxy variables is theoretically attractive but not always practical. 

Thus it is very important in practice that the researcher be careful in stating the sources of 

his/her data, how they were collected, what definitions were used, etc. Data collected by 



official agencies often come with several footnotes and the researcher should bring those to the 

attention of the reader  

1.8 LETS SUM IT UP: 

In last, we can say that specification error occurs when an independent variable is correlated 

with the error term. In this process we find appropriate functional form for the model and 

choosing which variables to include. If particular estimated model is mis-specified, it will give 

biased and inconsistent results. 

1.9 EXCERCISES : 

Q.1 Consider the model 

           Yi = β1 + β2X*I + ui  

In practice we measure X*Xi such that 

a. Xi = X*i+ 5 

b. Xi = 3X*i 

c. Xi = (X*i+ εi ), where εi is a purely random term with the usual properties 

 What will be the effect of these measurement errors on estimates of true 

β1 and β2? 

Q.2  Suppose that the true model is 

                          Yi = β1Xi + ui                                (1) 

but instead of fitting this regression through the origin you routinely fit the usual intercept-

present model: 



                          Yi = α0 + α1Xi + vi                       (2) 

Assess the consequences of this specification error 

Q.3  Suppose that the “true” model is 

                 Yi = β1 + β2X2i + ut                             (1) 

but we add an “irrelevant” variable X3 to the model (irrelevant in the sense that the true β3 

coefficient attached to the variable X3 is zero) and 

estimate 

                  Yi = β1 + β2X2i + β3X3i + vi              (2) 

a. Would the R2 and the adjusted R2 for model (2) be larger than that for model (1)? 

b. Are the estimates of β1 and β2 obtained from (2) unbiased? 

c. Does the inclusion of the “irrelevant” variable X3 affect the variances of ˆ β1 and ˆ β2? 

Q.4 what are the consequences of model specification errors? 

Q.5 What are the various tests used for detecting specification errors? 
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2.1 INTRODUCTION: 

In carrying out specification testing, it is useful to distinguish between nested and non-nested 

mode,s. To distinguished between the two, consider the following models: 

Model A: Yi = 1 + 2X2i + 3X3i + 4X4i + 5X5i + ui 

Model B: Yi = 1 + 2X2i + 3X3i + ui 

 We say that Model B is nested in Model A because it is a special case of  Model A: if 

we estimate Model A and test the hyp0othesis that 4 = 5 = 0 and  do not reject it on the basis 

of , say, the F test Model A reduces to Model B. If we add variable X4  to Model B, then Model 

A will reduce to Model B if 5 is zero; here we will use the t test tot est the hypothesis that the 

coefficient of X5 is zero. 

Without calling them such, the specification error tests we have discussed previously and the 

restricted F are essentially tests of nested hypothesis. 

Now consider the following modes: 

Model C: Yi = 1 + 2X2i + 3X3i  + ui 

Model D: Yi = 1 + 2Z2i + 3Z3i + ui 

Where the X's And Z's are different variables. We say that Models C and D are non-nested 

because one cannot be derived as a special case of the other. In economics, as in other 

sciences, more than one competing theory may explain a phenomenon. Thus the monetarists 

would emphasize the role of money in explaining changes in GDP, whereas the Keynesians 

may explain them by changes in government expenditure. 

NESTED VERSUS NON - NESTED MODELS



It may be noted here that one can allow Model C and D to contain regressors that are common 

to both. For example, X3 could be included in Model D and Z2 could be included in Model C. 

Even then these are non nested models, because Model C does not contain Z3 and Model D 

does not contain X2. 

Even if the same variables enter the model, the functional form may make two models non-

nested. For example, consider the model: 

Model E: Yi = 1 + 2InZ2i + 3InZ3i + wi 

Models D and E are non-nested, as one cannot be derived as a special case of the other. 

Since we already have looked at tests of nested model (t and F tests), in the following section 

we discuss some of the tests of non-nested model, which earlier we called model mis-

specification errors. 

 

2.2 OBJECTIVES: 

 1. The first objective is to distinguish between nested and non-nested         models. 

 2. Understand the model selection criteria for empirical analysis. 

3. Detect nested and non-nested  models through formal econometric tests. 

4. Distinguish among the wide range of available tests for detecting non-nested models. 

 

2.3 TESTS OF NON-NESTED HYPOTHESES 

According to Harvey, there are two approaches to testing non-nested hypotheses: 



(1) the discrimination approach, where given two or more competing models, one chooses a 

model based on some criteria of goodness of fit, and (2) the discerning approach (my 

terminology) where, in investigating one model, we take into account information provided by 

other models. We consider these approaches briefly. 

2.3.1 The Discrimination Approach: 

Consider Models C and D above. Since both models involve the same dependent variable, we 

can choose between two (or more) models based on some goodness-of-fit criterion, such as R2 

or adjusted R2, which we have already discussed. But keep in mind that in comparing two or 

more models, the regress and must be the same. Besides these criteria, there are other criteria 

that are also used. These include Akaike’s information criterion (AIC), Schwarz’s 

information criterion (SIC), and Mallows’s Cp criterion. 

2.3.2 The Discerning Approach: 

The Non-Nested F Test or Encompassing F Test. Consider Models C and D introduced 

earlier. How do we choose between the two models? For this purpose suppose we estimate the 

following nested or hybrid model: 

     

      Model F: Yi = λ1 + λ2X2i + λ3X3i + λ4Z2i + λ5Z3i + ui 

 

Notice that Model F nests or encompasses models C and D. But note that C is not nested in D 

and D is not nested in C, so they are non-nested models. 

Now if Model C is correct, λ4 = λ5 = 0, whereas Model D is correct if λ2 = λ3 = 0. This testing 

can be done by the usual F test, hence the name non-nested F test. 



However, there are problems with this testing procedure. First, if the X’s and the Z’s are highly 

correlated, then, as noted in the lesson on multicollinearity, it is quite likely that one or more of 

the λ’s are individually statistically insignificant, although on the basis of the F test one can 

reject the hypothesis that all the slope coefficients are simultaneously zero. In this case, we 

have no way of deciding whether Model C or Model D is the correctmodel. Second, there is 

another problem. Suppose we choose Model C as the reference hypothesis or model, and find 

that all its coefficients are significant. Now we add Z2 or Z3 or both to the model and find, 

using the F test, that their incremental contribution to the explained sum of squares (ESS) is 

statistically insignificant. Therefore, we decide to choose Model C. But suppose we had 

instead chosen Model D as the reference model and found that all its coefficients were 

statistically significant. But when we add X2 or X3 or both to this model, we find, again using 

the F test, that their incremental contribution to ESS is insignificant. Therefore, we would have 

chosen model D as the correct model. Hence, “the choice of the reference hypothesis could 

determine the outcome of the choice model,”33 especially if severe multicollinearity is present 

in the competing regressors. Finally, the artificially nested model F may not have any 

economic meaning. 

2.3.3 Davidson–MacKinnon J Test.  

Because of the problems just listed in the non-nested F testing procedure, alternatives have 

been suggested. One is the Davidson–MacKinnon J test. To illustrate this test, suppose we 

want to compare hypothesis or Model C with hypothesis or Model D. The J test proceeds as 

follows: 

1. We estimate Model D and from it we obtain the estimated Y values, ˆY Di . 

2. We add the predicted Y value in Step 1 as an additional regressor to 

Model C and estimate the following model: 

          



                    Yi = α1 + α2X2i + α3X3i + α4ˆYDi+ ui      (5)      where the ˆYDi values are 

obtained from Step 1. This model is an example of the encompassing principle, as in the 

Hendry methodology. 

3. Using the t test, test the hypothesis that α4 = 0. 

4. If the hypothesis that α4 = 0 is not rejected, we can accept (i.e., not 

reject) Model C as the true model because ˆY Di included in (5), which represent the influence 

of variables not included in Model C, have no additional explanatory power beyond that 

contributed by Model C. In other words, Model C encompasses Model D in the sense that the 

latter model does not contain any additional information that will improve the performance of 

Model C. By the same token, if the null hypothesis is rejected, Model C cannot be the true 

model (why?). 

5. Now we reverse the roles of hypotheses, or Models C and D. We now estimate Model C 

first, use the estimated Y values from this model as regressor in (5), repeat Step 4, and decide 

whether to accept Model D over Model C. More specifically, we estimate the following model: 

              Yi = β1 + β2Z2i + β3Z3i + β4ˆYCi+ ui        (6) 

 

where ˆY Ci are the estimated Y values from Model C. We now test the hypothesis that β4 = 0. 

If this hypothesis is not rejected, we choose Model D over C. If the hypothesis that β4 = 0 is 

rejected, choose C over D, as the latter does not improve over the performance of C. 

Although it is intuitively appealing, the J test has some problems. Since the tests given in (5) 

and (6) are performed independently, we have the following likely outcomes 

 

                                                      Hypothesis: α4 = 0 



Hypothesis: β4 = 0       Do not reject                      Reject 

Do not reject                Accept both C and D       Accept D, rejectC 

Reject                           Accept C, reject D            Reject both C and D          

 

 As this table shows, we will not be able to get a clear answer if the J testing procedure leads to 

the acceptance or rejection of both models. In case both models are rejected, neither model 

helps us to explain the behavior of Y. Similarly, if both models are accepted, as Kmenta notes, 

“the data are apparently not rich enough to discriminate between the two hypotheses 

[models].” Another problem with the J test is that when we use the t statistic to test the 

significance of the estimated Y variable in models (5) and (6), the t statistic has the standard 

normal distribution only asymptotically, that is, in large samples. Therefore, the J test may not 

be very powerful (in the statistical sense) in small samples because it tends to reject the true 

hypothesis or model more frequently than it ought to.     

2.4 SUMMARY AND CONCLUSIONS:             

  

If errors of measurement are detected or suspected, the remedies 

are often not easy. The use of instrumental or proxy variables is theoretically attractive but not 

always practical. Thus it is very important in practice that the researcher be careful in stating 

the sources of his/her data, how they were collected, what definitions were used, etc. Data 

collected by official agencies often come with several footnotes and the researcher should 

bring those to the attention of the reader. Model mis-specification errors can be as serious as 

equation specification errors. In particular, we distinguished between nested and nonnested 

models. To decide on the appropriate model we discussed the nonnested, or encompassing, F 

test and the Davidson–MacKinnon J test and pointed out the limitation of each test. 



 

2.5  LETS SUM  IT UP:  

 

In concluding remarks, we can say that Model mis- specification errors can lead to various 

equation specification errors. In this  lesson, we distinguished between nested and non-nested 

models. Hendry argues several econometric work starts with very simplified models and that 

not enough diagnostic tests are applied to check whether something is wrong with the 

maintained model. His suggested strategy is to start with a very general model and then 

progressively simplify it by some data based simplification tests.  

2.6 EXCERCISES: 

Q.1  Distinguish between nested and non-nested models? 

Q.2  What is the discrimination approach of non nested hypotheses? 

Q.3 Elaborate the discerning approach of non nested hypotheses? 

Q.4  What is Davidson–MacKinnon J Test 

2.7  Suggested  Reading / References: 

1. Baltagi, B.H.(1998). Econometrics, Springer,  New York. 

2. Chow,G.C.(1983). Econometrics,  McGraw Hill, New York. 

3. Goldberger, A.S.(1998). Introductory Econometrics, Harvard University Press, Cambridge, 

Mass. 
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3.1 INTRODUCTION: 

The assumption 10 of the classical linear regression model (CLRM) is that there is no 

multicollinearity among the regressors included in the regression model. In this lesson we take 

a critical look at this assumption by seeking answers to the following questions: 

 

1. What is the nature of multicollinearity? 

 

2. Is multicollinearity really a problem? 

 

3. What are its practical consequences? 

 

4. How does one detect it? 

 

5. What remedial measures can be taken to alleviate the problem of 

multicollinearity? 

3.2 OBJECTIVES: 

1. Understand the meaning of  multicollinearity. 

2. Understand the consequences of multicollinearity  on OLS estimates. 

3. Detect multicollinearity. through rule of thumb  inspection. 

4. Detect multicollinearity. through formal econometric tests. 

5. Distinguish among the wide range of available tests for detecting multicollinearity.. 

 

 

3.3 MULTICOLLINEARITY 

UNIT - III



It means the existence of a perfect or exact linear relationship among some all explanatory 

variables of a regression model. 

X2i = X3i     perfect multicollinearity 

It is due to Ragnar Frisch 

1X1 + 2X2 +…………..+ kXk = 0   

1 2…………k  are constants 

The term multicollinearity is used in a broader sense to include the case of perfect 

multicollionearity. 

1X1 + 2X2 +…………..+ kXk + Vi = 0   

Where Vi is a stochastic error term. 

Difference between perfect & less than perfect multicollinearly assumed. 

  

  Linear combination 2  0 

 

 

which shows that X2 is not an exact linear. Combination of other X's because it is also 

determined by the stochastic error term Vi. 

 

 3.3.1 NATURE/ SOURCE: 



If multicollinearity is perfect in the sense, the regression coefficients of the X variables are 

indeterminate and their standard errors are infinite. If multicollinearity is less than perfect, the 

regression coefficients, although determinate, possess large standard errors (in relation to the 

coefficients themselves), which means the coefficients cannot be estimated with great 

precision or accuracy. The following can be reasons for the existence of multicollinearity: 

 

1. Data collection method  

2. Constraints on the model. 

3. Model specification. 

4. An over determined model. 

 

3.3.2 REMEDIAL MEASURES 

3.3.2.1 Do Nothing 

The "do nothing" school of thought is expressed by Blanchard as follows: 

When students run their first ordinary least squares (OLS) regression, the first problem 

that they usually encounter is that of multicollinearity. Many of them conclude that 

there is something wrong with OLS; some resort to new and often creative techniques 

to or around the problem. But we tell them, this is wrong, Multicollineaity is God's will, 

not a problem with OLS or statistical technique in general. 

What Blanchard is saying is that multicollinearity is essentially a data deficiency 

problem (micronumerosity, again) and some times we have no choice over the data we 

have available for empirical analysis. 

 



3.3.2.2 Rule of Thumb Procedures 

One can try the following rules of thumb to ad 

dress the problem of multicollinearity, the success depending on the severity of the 

multicollinearity problem.  

1. A priori information. Suppose we consider the model  

  iiii uXXY  33221  

where Y = consumption, X2 = income, and X3 = wealth. As noted before, 

income and wealth variables tend to be highly collinear. But suppose a priori we 

believe that ;10.0 23    that is, the rate of change of consumption with respect 

to wealth is one-tenth the corresponding rate with respect to income. We can 

then run the following regression:  

 

iii

iii

uX

uiXXY





2

32221 100.
 

Where Xi + 0.1X3i. Once we obtain ,ˆ
2  we can estimate 3̂  from the postulated 

relationship between 2  and 3 .  

2. Combining cross-sectional and time series data. A variant of the extraneous 

or a priori information technique is the combination of cross-sectional and time-

series data, known as pooling the data. Suppose we want to study the demand for 

automobiles in the United States and assume we have time series data on the 

number of cars sold, average price of the car,  

   tt uInIInPYIn  31211  



 Where Y = number of cars sold, P = average price, I = income, and t = time. Out 

objective is to estimate the price elasticity 2  and income elasticity .3  

In time series data the price and income variables generally tend to be highly collinear. 

Therefore, if we run the proceeding regression, we shall be faced with the usual 

multicollinearity problem. A way out of this has been suggested by Tobin. He says that 

if we have cross-sectional data (for example, data generated by consumer panels, or 

budget studies conducted by various private and governmental agencies), we can obtain 

a fairly reliable estimate of the income elasticity 3  because in such data, which are at 

a point in time, the prices do not vary much. Let the cross-sectionally estimated income 

elasticity be 3̂ . Using this estimate, we may write the preceding times series 

regression as  

ttt uPInY  21
*  

Where Y* = In Y - 3̂  In I, that is, Y* represents that value of Y after removing from it 

the effect of income. We can now obtain an estimate of the price elasticity 2  from the 

preceding regression.  

3) Dropping a variable (s) and specification bias. When faced with severe 

multicollinearity, one of the “simplest” things to do is to drop one of the collinear 

variables. Thus, in our consumption-income-wealth illustration, which shows that, 

whereas in the original model the income variable was statistically insignificant, it is 

now ‘highly’ significant.  

But in dropping a variable from the model we may be committing specification bias or 

specification error. Specification bias arises from incorrect specification of the model 

used in the analysis. Thus, if economic theory says that income and wealth should both 



be included in the model explaining the consumption expenditure, dropping the wealth 

variable would constitute specification bias.  

iiii uXXY  33221   

But we mistakenly fit the model  

).........(..........ˆ 12121 iii uXbbY   

Then it can be shown that  

).......(..........)( 2323212 bbE   

where b32 = slope coefficient in the regression of X3 on X2. Therefore, it is obvious that 

b12 will be a biased estimate of 2  as long as b32 is different from zero (it is assumed 

that 3  is different from zero; otherwise there is no sense in including X3 in the 

original model). Of course, if b32 is zero, we have no multicollinearity problem to begin 

with. It is also clear from that if both b32 and 3  are positive (or both are negative), 

E(b12) will be greater than ;2  hence, on the average b12 will overestimate 2 , leading 

to a positive bias. Similarly, if the product b32 3  is negative, on the average b12 will 

underestimate 2 , leading to a negative bias.  

4) Transformation of variables. Suppose we have time series data on 

consumption expenditure, income and wealth. One reason for high multicollinearity 

between income and wealth in such data is that over time both the variables tend to 

move in the same direction. One way of minimizing this dependence is to proceed as 

follows.  

If the relation  

  )3.....(....................33221 tttt uXXY    



Holds at time t, it must also hold at time t – 1 because the origin of time is arbitrary 

anyway. Therefore, we have  

 )4.....(..........11,331,2211   tttt uXXY   

If we subtract (3) from (1), we obtain  

  )5.(..........)()( 1,3331,2221 ttttttt vXXXXYY     

Where .1 ttt uuv Equation (5 ) is known as the first difference form because we run 

the regression, not on the original variables, but on the differences of successive values 

of the variables.  

The first difference regression model often reduces the severity of multicollinearity 

because, although the levels of X2 and X3 may be highly correlated, there is no a priori 

reason to believe that their differences will also be highly correlated.  

As we shall see in the lessons on time series econometrics, an incidental advantage of 

the first – difference transformation is that it may make a nonstationary time series 

stationary. In those lessons we will see the importance of stationary time series Another 

commonly used transformation in practice is the ratio transformation.  

Consider the model:  

)......(.......... 633221 tttt uXXY   

Where Y is consumption expenditure in real dollars, X2 is GDP, and X3 is total 

population. Since GDP and population grow over time, they are likely to be correlated. 

One “Solution” to this problem is to express the model on a per capita basis, that is, by 

dividing (6) by X3, to obtain:  
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Such a transformation may reduce collinearity in the original variables.  

But the first – difference or ratio transformations are not without problems. For 

instance, the error term vt in ( ) may not satisfy one of the assumptions of the classical 

linear regression model, namely, that the disturbances are serially uncorrelated.  

5) Additional or new data. Since multicollinearity is a sample feature, it is 

possible that in another sample involving the same variables collinearity may be so 

serious as in the first sample. Sometimes simply increasing the size of the sample (if 

possible) may attenuate the collinearity problem. For example, in the three-variable 

model we saw that  

)(
)ˆvar( 2

23
2
2

2

2 1 rx i 
  

Now as the sample size increases, 2
2ix  will generally increase. Therefore, for any 

given r23, the variance of 2̂  will decrease, thus decreasing the standard error, which 

will enable us to estimate 2  more precisely.  

6) Other methods of remedying multicollinearity. Multivariate statistical 

techniques such as factor analysis and principal components or techniques such as ridge 

regression are often employed to ‘solve’ the problem of multicollinearity. 

Unfortunately, these techniques are beyond the scope of this book, for they cannot be 

discussed competently without resorting to matrix algebra.  

 

3.4 SUMMARY AND CONCLUSIONS: 



1. One of the assumptions of the classical linear regression model is that there is no 

multicollinearity among the explanatory variables, the X’s. Broadly interpreted, 

multicollinearity refers to the situation where there is either an exact or approximately exact 

linear relationship among the X variables. 

 

2. The consequences of multicollinearity are as follows: If there is perfect collinearity among 

the X’s, their regression coefficients are indeterminate and their standard errors are not 

defined. If collinearity is high but not perfect, estimation of regression coefficients is possible 

but their standard errors tend to be large. As a result, the population values of the coefficients 

cannot be estimated precisely. However, if the objective is to estimate linear combinations of 

these coefficients, the estimable functions, this can be done even in the presence of perfect 

multicollinearity 

3. Although there are no sure methods of detecting collinearity, there are several indicators of 

it, which are as follows: 

 

(a) The clearest sign of multicollinearity is when R2 is very high but none of the regression 

coefficients is statistically significant on the basis of the conventional t test. This case is, of 

course, extreme. 

 

(b) In models involving just two explanatory variables, a fairly good idea of collinearity can be 

obtained by examining the zero-order, or simple, correlation coefficient between the two 

variables. If this correlation is high, multicollinearity is generally the culprit. 

 

(c) However, the zero-order correlation coefficients can be misleading in models involving 

more than two X variables since it is possible to have low zero-order correlations and yet find 

high multicollinearity. In situations like these, one may need to examine the partial correlation 

coefficients. 

 

(d) If R2 is high but the partial correlations are low, multicollinearity is a possibility. Here one 

or more variables may be superfluous. But if R2 is high and the partial correlations are also 



high, multicollinearity may not be readily detectable. Also, as pointed out by C. Robert, 

Krishna Kumar, John O’Hagan, and Brendan McCabe, there are some statistical problems with 

the partial correlation test suggested by Farrar and Glauber. 

 

(e) Therefore, one may regress each of the Xi variables on the remaining X variables in the 

model and find out the corresponding coefficients of determination R2 . A high R2 would 

suggest that Xi is highly correlated with the rest of the X’s. Thus, one may drop that Xi from 

the model, provided it does not lead to serious specification bias. 

 

4. Detection of multicollinearity is half the battle. The other half is concerned with how to get 

rid of the problem. Again there are no sure methods, only a few rules of thumb. Some of these 

rules are as follows: (1) using extraneous or prior information, (2) combining cross-sectional 

and time series data, (3) omitting a highly collinear variable, (4) transforming data, and (5) 

obtaining additional or new data. Of course, which of these rules will work in practice will 

depend on the nature of the data and severity of the collinearity problem. 

 

5. We noted the role of multicollinearity in prediction and pointed out that unless the 

collinearity structure continues in the future sample it is hazardous to use the estimated 

regression that has been plagued by multicollinearity for the purpose of forecasting. 

 

3.5 LETS SUM IT UP:  

In the concluding remarks, we can say that in cases of near or high multicollinearity, one is 

likely to encounter the following consequences: 

 

1. Although BLUE, the OLS estimators have large variances and covariances, making precise 

estimation difficult. 

 



2. Because of consequence 1, the confidence intervals tend to be much wider, leading to the 

acceptance of the “zero null hypothesis” (i.e., the true population coefficient is zero) more 

readily. 

 

3. Also because of consequence 1, the t ratio of one or more coefficients tends to be 

statistically insignificant. 

 

4. Although the t ratio of one or more coefficients is statistically insignificant, R2, the overall 

measure of goodness of fit, can be very high. 

 

5. The OLS estimators and their standard errors can be sensitive to 

small changes in the data. 

 

3.6 EXCERCISES: 

Q.1 What do you mean by multicollinearity? 

Q.2 What is Rule of Thumb? 

Q.3 How can we detect multicollinearity? 

Q.4.State with reason whether the following statements are true, false, or uncertain: 

 

a. Despite perfect multicollinearity, OLS estimators are BLUE. 

 

b. In cases of high multicollinearity, it is not possible to assess the individual significance of 

one or more partial regression coefficients. 

 

c. If an auxiliary regression shows that a particular R2 is high, there is definite evidence of 

high collinearity. 

 



d. High pair-wise correlations do not suggest that there is high multicollinearity. 

 

e. Multicollinearity is harmless if the objective of the analysis is prediction only. 

 

f. Ceteris paribus, the higher the VIF is, the larger the variances of OLS estimators. 

 

g. The tolerance (TOL) is a better measure of multicollinearity than the VIF. 

 

h. You will not obtain a high R2 value in a multiple regression if all the partial slope 

coefficients are individually statistically insignificant on the basis of the usual t test. 

 

i. In the regression of Y on X2 and X3, suppose there is little variability in the values of X3. 

This would increase var ( ˆ β3). In the extreme, if all 

X3 are identical, var ( ˆ β3) is infinite. 

Q.5  a. Show that if r1i = 0 for i = 2, 3, . . . , k  then R1.2 3. . . k = 0 

 

b. What is the importance of this finding for the regression of variable X1(=Y) on X2, X3, . . . , 

Xk? 
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2.1 INTRODUCTION: 

There are generally three types of data that are available for empirical analysis: (1) cross 

section, (2) time series, and (3) combination of cross section and time series, also known as 

pooled data. In developing the classical linear regression model (CLRM) we made several 

assumptions. However, we noted that not all these assumptions would hold in every type of 

data. As a matter of fact, we saw in the previous lesson  that the assumption of 

homoscedasticity, or equal error variance, may not be always tenable in cross-sectional data. In 

other words, cross-sectional data are often plagued by the problem of heteroscedasticity. 

However, in cross-section studies, data are often collected on the basis of a random sample of 

cross-sectional units, such as households (in a consumption 

function analysis) or firms (in an investment study analysis) so that there is no prior reason to 

believe that the error term pertaining to one household or a firm is correlated with the error 

term of another household or firm. If by chance such a correlation is observed in cross-

sectional units, it is called spatial autocorrelation, that is, correlation in space rather than over 

time. However, it is important to remember that, in cross-sectional analysis, the ordering of the 

data must have some logic, or economic interest, to make sense of any determination of 

whether (spatial) autocorrelation is present or not. The situation, however, is likely to be very 

different if we are dealing with time series data, for the observations in such data follow a 

natural ordering over time so that successive observations are likely to exhibit 

intercorrelations, especially if the time interval between successive observations is short, such 

as a day, a week, or a month rather than a year. If you observe stock price indexes, such as the 

Dow Jones or S&P 500 over successive days, it is not unusual to find that these indexes move 

up or down for several days in succession. Obviously, in situations like this, the assumption of 

no auto, or serial, correlation in the error terms that underlies the CLRM will be violated. 

 

 

 

In this lesson we take a critical  look at this assumption with a view to answering the following 

questions: 

UNIT - IV



1. What is the nature of autocorrelation? 

2. What are the theoretical and practical consequences of autocorrelation? 

3. Since the assumption of no autocorrelation relates to the unobservable disturbances ut, how 

does one know that there is autocorrelation in any given situation? Notice that we now use the 

subscript t to emphasize that we are dealing with time series data. 

4. How does one remedy the problem of autocorrelation? 

 

2.2 OBJECTIVES: 

1. Understand the meaning of  autocorrelation. 

2. Understand the consequences of  autocorrelation  on OLS estimates. 

3. Detect autocorrelation through graph inspection. 

4. Detect autocorrelation  through formal econometric tests. 

5. Distinguish among the wide range of available tests for detecting autocorrelation.. 

 

2.3 WHAT IS AUTOCORRELATION  

Correlation between members of series of observation ordered in time (as in time series data) 

or space as in cross-sectional data) 

Auto doesn't exist in the disturbance u1) 

(ui uj) = 0  ij 

 

2.3.3 NATURE OF AUTOCORRELATION: 



1. Inertia: - Silent feature of most of the time series is inertia or sluggishness. Well 

known, time series such as GNI price Index. 

2. Specification Bias: Excluded variable case: - Residuals (which are proxies of ui) may 

suggest that same variable that were originally candidates but were not included in the 

model for a variety of reasons should be included. 

 Yi = 1 + 2X2t + 3X3t + 4 X4t + ui 

Y =  Quantity of beef demanded. 

X2 =  Price of beef 

X3 = Consumer income 

X4 = Price of Pork 

t = Time 

AFTER REGRESSION:- 

 Yt = 1 + 2X2t + 3X3t + 4 X4t + Vt 

 

3. Specification Bias: Incorrect functional form:-  

Marginal Costt = 1 + 2 output + 3outputi
2 + ui 

But we get the following model. 

MCt = 1+ 2 outputt + Vi  



    

 

4. Cobweb Phenomenon: - The supply of many agricultural commodities reflects 

the so called cobweb Phenomenon. Where supply reacts to price with a lag of 

one time period because supply decisions takes time implement. 

Supplyt = 1 + 2 Pt-1 + ut 

5. Lag: -  

Consumption: - 1 + 2 Income + 2 Consumptiont-1+ ut 

6. Manipulation of data: - In empirical analysis the raw data are often 

manipulated. 

7. Data Transformation:-  

Yt = 1 + 2Xt + ut   1  

Y = Consumption, X = Income 

MC curve 

corresponding to 

the 'true' model is 

along with the 

"incorrect" linear 

cost curve. 

 



Y(t-1) = 1 + 2X(t-1) + u(t-1)   2 Previous Period 

Y(t-1), X(t-1), u(t-1) are lagged values of X1 Y & U 

Sub. (II) from (I) we get 

Yt = 2 Xt + ut     first difference operator 

 

FOR EMPIRICAL PURPOSE 

Yt = 2Xt + Vt   Vt = ut = (ut - ut-1) 

 

2.3.4 TEST OF AUTOCORRELATION:  

2.3.2.1 Graphical Method:-  

 Plot any of error 

 Error term & there exists non-stationary 

 

Stationary 

Yt = ρYt-1 + ut 

Yt = Yt-1 + ut      (ρ=1) 

Yt - Yt-1 = ut  

Now assume there is lag operation (L)  

(Lyt = Yt-1) 

Yt - LYt = Ut 

yt (1-L) = Ut 



if (1-L) = 0 

L = 1 

This is known as unit root. 

(When root is unit autocorrelation is there) (Non stationary & unit rest is same) 

There are various ways of examine the residuals (error) 

 

a) Time sequence plot 

 

 

 

 

 



b) Standardized residual 

 

 

 

2.3.2.2 The Runs Test:- 

Initially, we have several residuals that are negative, then there is a series of positive residuals, 

and then there are several residuals that are negative. If these residuals were purely random, 

could we observe such a pattern? Intuitively, it seems unlikely. This intuition can be checked 

by the so-called runs test, sometimes also know as the Geary test, a nonparametric test.  

(---------)(++++++++++++++++++++)(--------------) 

This is also a crude method. 

We now define a run as an uninterrupted sequence of one symbol or attribute, such as + or -. 

We further define the length of a run as the number of elements in it. 

 

Type your text



2.3.2.3  Durbin Watson test:- 

 Also known as Durbin Watson d Test. 

 One of the good methods as the d statistic is based on the estimated residuals, which 

are computed in regression analysis  
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2.3.5 CONSEQUENCES OF AUTOCORRELATION: 

2.3.3.1 OLS Estimation allowing for Autocorrelation. 

 

 

To establish confidence interval to test hypotheses, one should be GLS & not OLS even 

though the estimators derived from the latter are unbiased & consistent. 

 

2.3.3.2 Estimation Disregarding Autocorrelation. 
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2.3.6 REMEDIAL MEASURES OF AUTOCORRELATION: 

1. Try to find out if the autocorrelation is pure autocorrelation or not because of the 

result of the mis-specification of the model. 

2. Transformation of original model, so that in the transformed model we do not 

have the problem of (Pure) autocorrelation. 

3. In case of large sample we can Newey-West method to obtain standard error of 

OLS estimators that are corrected for auto correlation.  

4. In some situation we can continue to use the OLS method. 

 

2.4 SUMMARY AND CONCLUSIONS:  

1. If the assumption of the classical linear regression model—that the errors or disturbances ut 

entering into the population regression function (PRF) are random or uncorrelated—is 

violated, the problem of serial or autocorrelation arises. 

 

 2. Autocorrelation can arise for several reasons, such as inertia or sluggishness of economic 

time series, specification bias resulting from excluding important variables from the model or 

using incorrect functional form, the cobweb phenomenon, data massaging, and data 

transformation. 

 

3. Although in the presence of autocorrelation the OLS estimators remain unbiased, consistent, 

and asymptotically normally distributed, they are no longer efficient. As a consequence, the 

usual t, F, and χ2 tests cannot be legitimately applied. Hence, remedial results may be called 

for. 

 



4. The remedy depends on the nature of the interdependence among the disturbances ut. But 

since the disturbances are unobservable, the common practice is to assume that they are 

generated by some mechanism. 

 

2.5 LETS SUM IT UP: 

 

In last, we can say that this lesson  in many ways similar to the preceding lesson on 

heteroscedasticity in that under both heteroscedasticity and autocorrelation the usual OLS 

estimators, although linear, unbiased, and asymptotically (i.e., in large samples) normally 

distributed, are no longer minimum variance among all linear unbiased estimators. In short, 

they are not efficient relative to other linear and unbiased estimators. Put differently, they may 

not be BLUE. As a result, the usual, t, F, and χ2 may not be valid. 

 

2.6 EXCERCISES: 

 

Q.1 State whether the following statements are true or false. Briefly justify your answer. 

 

a. When autocorrelation is present, OLS estimators are biased as well as inefficient. 

b. The Durbin–Watson d test assumes that the variance of the error term ut is homoscedastic. 

c. The first-difference transformation to eliminate autocorrelation assumes that the coefficient 

of autocorrelation ρ is −1. 

d. The R2 values of two models, one involving regression in the first difference form and 

another in the level form, are not directly comparable. 

e. A significant Durbin–Watson d does not necessarily mean there is autocorrelation of the first 

order. 

f. In the presence of autocorrelation, the conventionally computed variance and standard errors 

of forecast values are inefficient. 

g. The exclusion of an important variable(s) from a regression model may give a significant d 

value. 

 



 

 

Q.2 Given a sample of 50 observations and 4 explanatory variables, what can you say about 

autocorrelation if (a) d = 1.05? (b) d = 1.40? (c) d = 2.50? 

(d) d = 3.97? 

 

Q.3 In a sequence of 17 residuals, 11 positive and 6 negative, the number of runs was 3. Is 

there evidence of autocorrelation? Would the answer change if there were 14 runs? 

 

Q.4 Explain the Durbin-Watson and Runs Test for detecting autocorrelation? 

 

Q.5 Elaborate the various remedial measures of autocorrelation? 
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4.1 INTRODUCTION: 

Let us return to our wages productivity regression. There we saw that the d value was 0.1229 

and based on the Durbin-Watson d test we concluded that there was positive correlation in the 

error term. Could this correlation have arisen because our model was not correctly specified? 

Since the data underlying regression is time series data, it is quite possible that both wages and 

productivity exhibit trends. If that is the case, then we need to include the time or trend, t, 

variable in the model to see the relationship between wages and productivity net of the trends 

in the two variables.  

To test this, we included the trend variable and obtained the following results.  
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The interpretation of this model is straightforward: Over time, the index of real wages has been 

decreasing by about 0.90 units per year. After allowing for this if the productivity index went 

up by a unit, on average, the real wage index went up by about 1.30 units, although this 

number is not statistically different from one (why?). What is interesting to note is that even 

allowing for the trend variable, the d value is still very low, suggesting pure autocorrelation 

and not necessarily specification error.  

 To test this, we regress Y on X and X2 to test for the possibility that the real wage index may 

be nonlinearly related to the productivity index. The results of this regression are as follows:  
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MODEL MIS - SPECIFICATION VERSUS PURE AUTOCORRELATION



These results are interesting. All the coefficients are statistically highly significant, the p 

values being extremely small. From the negative quadratic term, it seems that although the real 

wage index increases as the productivity index increases, it increases at a decreasing rate. But 

look at the d value. It still suggests positive autocorrelation in the residuals, for dL = 1.391 and 

dU = 1.60 and the estimated d value lies below dL.  

It may be safe to conclude from the proceeding analysis that our wages-productivity regression 

probably suffers from pure autocorrelation and not necessarily from specification bias. 

Knowing the consequences of autocorrelation, we may therefore want to take some corrective 

action. We will do so shortly.  

Incidentally, for all the wages productivity regression that we have presented above, we 

applied the Jarque–Bera test of normality and found that the residuals were normally 

distributed, which is comforting because the d terms assumes normally of the error term.  

4.2 OBJECTIVES: 

1. The key objective is to find what are the criteria in choosing a model for empirical analysis. 

2. Our objective is to find  what types of model mis- specification errors is one likely to 

encounter in practice. 

3. The another objective is to find how does one evaluate the performance of competing 

models? 

4.3 CORRECTING FOR (PURE) AUTOCORRELATION: 

4.3.1 THE METHOD OF GENERALIZED LEAST SQUARES (GLS): 

Knowing the consequences of autocorrelation, especially the lack of efficiency of OLS 

estimators, we may need to remedy the problem. The remedy depends on the 

knowledge one has about the nature of interdependence among the disturbances, that is, 

knowledge about the structure of autocorrelation.  



As a starter, consider the two-variable regression model:  

t21 u tt XY  

And assume that the error term follows the AR(1) scheme, namely,  

111   ppuu ttt )(  

Now we consider two cases: (1) p is known and (2)  is not known but has to be 

estimated.  

When  is known  

If the coefficient of first-order autocorrelation is known, the problem of autocorrelation can be 

easily solved. Hence,  

11211   ttt uXY
     1

 

Multiplying by  on both sides, we obtain  

11211   ttt puXY
      2

 

Subtracting (2 ) from (1 ) gives  

ttttt XXYY   )()()( 1211 1
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We can express (3 ) as  
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Since the error term in (4) satisfies the usual OLS assumptions, we can apply OLS to the 

transformed variables Y* and X* and obtain estimators with all the optimum properties, 

namely, BLUE. In effect, running is tantamount to using generalized least squares (GLS) 

discussed in the previous lesson – recall that GLS is nothing but OLS applied to the 

transformed model that satisfies the classical assumptions.  

Regression (4) is known as the generalized, or quasi, difference equation. It involves 

regressing Y on X, not in the original form, but in the difference form, which is obtained by 

subtracting a proportion )(  of the value of a variable in the previous time period from its 

value in the current time period. In this differencing procedure we lose one observation 

because the first observation has no antecedent. To avoid this loss of one observation, the first 

observation on Y and X is transformed as follows. .2
1

2
1 11 pXandpY   This 

transformation is known as the Prais-Winsten transformation.  

4.3.2 OLS VERSUS FGLS AND HAC 

The practical problem facing the researcher is this: In the presence of auto-correlation, OLS 

estimators, although unbiased, consistent, and asymptotically normally distributed, are not 

efficient. Therefore, the usual inference procedure based on the t, F, and 
2  tests is no longer 

appropriate. On the other hand, FGLS (Feasible GLS and EGLS: Estimated GLS) HAC 

(Heteroscedasticity and autocorrelation estimation) produce estimators that are efficient, but 

the finite, or small-sample, properties of these estimators are not well documented. This means 

in small samples the FGLS and HAC might actually do worse than OLS. As a matter of fact, in 

a Monte Carlo study Griliches and Rao found that if the sample is relatively small and the 

coefficient of auto-correlation, , is less than 0.3, OLS is as good or better than FGLS. As a 

practical matter, then, one may use OLS in small samples in which the estimated rho is, say, 

less than 0.3. Of course, what is a large and what is a small sample are relative questions, and 

one has to use some practical judgement. If you have only 15 to 20 observations, the sample 

may be small, but if you have, say, 50 or more observations, the sample may be reasonably 

large.  



 

4.3.3 Coexistence of Autocorrelation and Heteroscedasticity 

What happens if a regression model suffers from both heteroscedasticity and autocorrelation? 

Can we solve the problem sequentially, that is, take care of heteroscedasticity first and then 

autocorrelation? As a matter of fact, one author contends that “Autoregression can only be 

detected after the heteroscedasticity is controlled for”. But can we develop an omnipotent test 

that can solve these and other problems (e.g., model specification) simultaneously? Yes, such 

tests exist, but their discussion will take us far afield. It is better to leave them for references.  

  



4.4 SUMMARY AND CONCLUSIONS 

1. If the assumption of the classical linear regression model that the errors or 

disturbances ut entering into the population regression function (PRF) are 

random or uncorrelated – is violated, the problem of serial or autocorrelation 

arises.  

2. Autocorrelation can arise for several reasons, such as inertia or sluggishness of 

economic time series, specification bias resulting from excluding important 

variables from the model or using incorrect functional form, the cobweb 

phenomenon, data massaging, and data transformation. As a result, it is useful to 

distinguish between pure autocorrelation and “induced” autocorrelation because 

of one or more factors just discussed.  

3. Although in the presence of autocorrelation the OLS estimators remains 

unbiased, consistent, and asymptotically normally distributed, they are no longer 

efficient. As a consequence, the usual t, F, and 
2  tests cannot be legitimately 

applied. Hence, remedial results may be called for.  

4. The remedy depends on the nature of the interdependence among the 

disturbances ut. But since the disturbances are unobservable, the common 

practice is to assume that they are generated by some mechanism.  

5. The mechanism that is commonly assumed is the Markov first-order 

autoregressive scheme, which assumes that the disturbance in the current time 

period is linearly related to the disturbance term in the previous time period, the 

coefficient of autocorrelation p providing the extent of the interdependence. This 

mechanism is known as the AR(1) scheme.  



6. If the AR(1) scheme is valid and the coefficient of autocorrelation is known, the 

serial correlation problem can be easily attacked by transforming the data 

following the generalized difference procedure. The AR(1) Scheme can be easily 

generalized to an AR(p). One can also assume a moving average (MA) 

mechanism or a mixture of AR and MA schemes, known as ARMA. This topic 

will be discussed in the lessons on time series econometrics.  

7. Even if we use an AR(1) scheme, the coefficient of autocorrelation is not known 

a priori. We considered several methods of estimating p, such as the Durbin-

Watson d, Theil-Nagar modified d, Cochrane-Orcutt (C-O) iterative procedure, 

C-O two step method, and the Durbin two-step procedure. In large samples, 

these methods generally yield similar estimates of p, although in small samples 

they perform differently. In practice, the C-O interative method has become 

quite popular.  

8. Using any of the methods just discussed, we can use the generalized difference 

method to estimate the parameters of the transformed model by OLS, which 

essentially amounts to GLS. But since we estimate ),ˆ( p  we call the method 

of estimation as feasible, or estimated, GLS, or FGLS or EGLS for short.  

1. In using EGLS, one has to be careful in dropping the first observation, for in 

small samples the inclusion or exclusion of the first observation can make a 

dramatic difference in the results. Therefore, in small samples it is advisable to 

transform the first observation according to the Prais-Winsten procedure. In 

large samples, however, it makes little difference if the first observation is 

included or not.  



10. It is very important to note that the method of EGLS has the usual optimum 

statistical properties only in large samples. In small samples, OLS may actually 

do better that EGLS, especially if ..30p  

11. Instead of using EGLS, we can still use OLS but the correct the standard errors 

for autocorrelation by the Newey-West HAC procedure. Strictly speaking, this 

procedure is valid in large samples. One advantages of the HAC procedure is 

that it not only corrects for autocorrelation but also for heteroscedasticity, if it is 

present. 

12. Of course, before remediation comes detection of autocorrelation. There are 

formal and informal methods of detection. Among the informal methods, once 

can simply plot the actual or standardized residuals, or plot current residuals 

against past residuals. Among formal methods, one can use the runs test, Durbin 

Watson d test, asymptotic normality test, Berenblutt-Webb test, and Breusch-

Godfrey (BG) test. Of these, the most popular and routinely used is the Durbin-

Watson d test, for it is much more general in that it allows for both AR and MA 

error structures as well as the presence of lagged regressed as an explanatory 

variable. But keep in mind that it is a large sample test. 

4.5  LETS SUM IT UP:  

In concluding remarks, we can say that if particular model is not specified correctly, we face 

the problem of  model specification error or model specification bias.



4.6 EXCERCISES: 

Q1 State Breusch Pagan Godfrey test. 

Q2 What happens to OLS estimation in presence of autocorrelation? 

Q3 What is EGLS or FGLS? 

Q4 Does heteroscedasticity makes the estimators biased? Explain.  

Q5 Describe correlation for pure autocorrelation. 

Q6 Describe multicollinearity its test and remedial measures. 
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1.1 INTRODUCTION: 

The classical linear regression model is that the disturbances ui appearing in the population 

regression function are homoscedastic; that is, they all have the same variance. In this lesson 

we examine the validity of this assumption and find out what happens if this assumption is not 

fulfilled. We seek answers to the following questions: 

 

1. What is the nature of heteroscedasticity? 

2. What are its consequences? 

3. How does one detect it? 

4. What are the remedial measures? 

1.2 OBJECTIVES: 

1. Understand the meaning of heteroskedasticity and homoskedasticity through examples. 

2. Understand the consequences of heteroskedasticity on OLS estimates. 

3. Detect heteroskedasticity through graph inspection. 

4. Detect heteroskedasticity through formal econometric tests. 

5. Distinguish among the wide range of available tests for detecting heteroskedasticity. 

 

1.3 HETEROSCEDASTICITY 

Where the conditional variance of the Y population varies  with X. This situation in known 

appropriately as heteroscedasticity or unequal spread or variance. 

  22
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UNIT - V



 

 

 

1.3.2 Nature of Heteroscedasticity  

2. It’s an error learning model, as people learn, their error of behavoiur become 

smaller over time. 

3. As income grow, people have more discretionary income & hence more scope for 

choice about the disposition of their income. 

4. As data collecting techniques increases 2
i is likely to decrease. 

5. If can also arise as a result of the presence of collinear. 

6. It is skewness in the distribution of one or more regressions included in the model. 

7. Incorrect data transformation. 

8. Incorrect functional form. 

 

Higher income 

families on the 

arrange save more 

than the lower 

income family, but 

there is more 

variability in their 

savings 



1.3.1.1 OLS Estimation in the Presence of Heteroscedasticity 

  22
iiuE   

 Yi = 1+ 2Xi + ui 

 Applying the usual formula the OLS estimator is 2 is 

2 = 
xiyi
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1.3.3 DETECTION OR TEST 

1.3.2.1  Informal Methods 

1. Nature of Problem: - Very often nature of the problem under consideration 

suggests whether heteroscedasticity is likely to be encountered. 

2. Graphical Problem: - If there is no empirical information about the nature of 

heteroscedasticity, in practice one can do the regression analysis on the 

assumption that there is no heteroscedasticity & then do a postmortem 



examination of the residual squared 2
îu to see if they exhibit any systematic 

pattern. 

1.3.3.2  Formal Methods 

1. Park Test: - Park formalized the graphical method by suggesting that 2
i  is 

same function of the explanatory variable Xi. 

His suggested function was 

iii

vi
ii

VX
or

eX





lnlnln 22

22


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Since 2
i   is generally not known. Park suggested using iû , as a proxy & 

running following regression. 

ii

iii

VX
VXu




ln
lnlnˆln 22




 

- If  turn out to be statistically significant, it would suggest that 

heteroscedasticity is present in the data. 

- Park test is two stage procedure 

a) We run the OLS regression disregarding the heteroscedasticity question. 

b) Run the regression. 

2. Glejser Test: - It is as Park test. He suggests regressing the absolute values of 

1̂uon the X variable. 

 ii VXiu  2
21ˆ   

3. Spearman's Rank Correlation Test:-  
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 di = difference in the rank 

 n= no. of individual. 

4. GoldFeld Quandt Test: - One of the popular methods, in which of one assumes 

that the heteroscedasticity variance 𝑖
2 is positively related to one of the 

explanatory valuables in the regression model. 

iii uXY  21   

Suppose 𝑖
2 is positively related to Xi 

𝑖
2 = 2 X𝑖

2 

5. Breusch Pagan Godfrey Test (BPG Test):-  
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      (Linear functions) 

 0.............210  m  

{No heteroscedasticity, no relation between two} 

Run the regression 

2
1̂u  mmzzz  .............22110   

θ = 
1

2
 ESS 



6. White Test: - (Most logical for all) 

 
222110 uXXYi  
 

Error may be related between X1 & X2. 

2
1̂u  ivXXXXXX  215

2
24

2
1322110   

of 0..........21  no    (No heteroscedasticity) 

White test can be a test of heteroscedasticity or specification error or both. 

 

1.3.3 CONSEQUENCES OF USING OLS IN THE PRESENCE OF 

HETEROSCEDASTICITY   

As we have seen, both *
2̂  and 2̂  are (linear) unbiased estimators: In repeated 

sampling, on the average, *
2̂  and 2̂  will equal the true 2; that is, they are both 

unbiased estimators. But we know that it is *
2̂  that is efficient that is, has the smallest 

variance. What happens to our confidence interval, hypotheses testing, and other 

procedures if we continue to use the OLS estimator *
2̂  ? We distinguish two cases. 

1.3.3.1 OLS Estimation allowing for heteroscedasticity   

Suppose we use *
2̂  and use the variance formula given in var ( 2̂ ) = 

x
2
1


2
1

(𝑥1
2)

2,  which 

takes into account heteroscedasticity explicitly. Using this variance, and assuming 𝑖
2 

are known, can we establish confidence intervals and test hypotheses with the usual t 

and F test? The answer generally is no because it can be shown that var( *
2̂ ) < var( *

2̂



),5 which means that confidence intervals based on the latter will be unnecessarily 

larger. As a result, the t and F test are likely to give us inaccurate results in that var ( 2̂

)is overly large and what appears to be a statistically insignificant coefficient (because 

the t value is smaller than what is appropriate) may in fact be significant if the correct 

confidence intervals were established on the basis of the GLS procedure. 

1.3.3.2 OLS Estimation disregarding heteroscedasticity   

The situation can become serious if we not only use 2̂  but also continue to use the 

usual (Homoscedasticity) variance formula given in var ( 2̂ )= 
2

𝑥1
2 even if 

heteroscedasticity is present or suspected: Note that this is the more likely case of the 

two we discuss here running in standard OLS regression package and ignoring )or 

being ignorant (or being ignorant of) heteroscedasticity will yield variance of 2̂ . First 

of all car ( 2̂ )is a biased estimator of var ( 2̂ ) that is, on the average it over estimates 

or underestimates the latter, and in general we cannot tell whether the bias is positive 

(overestimation) or negative (underestimation) because it depends on the nature of the 

relationship between 2
i and the values taken by the explanatory variable X,. The bias 

arise from the fact that
2̂ , the conventional estimator of 

2̂ , namely  2
îu (n-2) is no 

longer an unbiased estimator of the latter when heteroscedasticity in present . As a 

result, we can no longer rely on the conventionally computed confidence intervals and 

the conventionally employed t and F tests. In short, if we persist in using the usual 

testing procedures despite heteroscedasticity, whatever conclusions we draw or 

inferences we make may be very misleading. 

To throw more light on this topic, we refer to a Monte Carlo study conducted by 

Davidson and MacKonnon. They consider the following simple model, which in our 

notation is  



Yi= 1 + 2Xi + ui 

They assume that 1 = 1, 2 = 1, and ui N(0, 
iX ). 

From the preceding discussion it is clear that heteroscedasticity is potentially a serious 

problem and the researcher needs to know whether it is present in a given situation. If 

its presence is detected, then one can take corrective action, such as using the weighted 

least-squares regression or some other technique. Before we turn to examining the 

various corrective procedures, however, we must first find out whether the various 

corrective procedures, however, we must first find out whether heteroscedasticity is 

present or likely to be present in a given case. 

 

1.3.4  REMEDIAL MEASURES 

When 2
i  is known: The method of weighted least squares 

As we have seen, if 2
i  is known, the most straight forward method of correcting 

heteroscedasticity is by means of weighted least squares, for the estimators thus 

obtained are BLUE.  

When 2
i  is not known 

If true 2
i  are known, we can use the WLS method to obtain BLUE estimators. Since 

the true 2
i  are rarely known, is there a way of obtaining consistent (in the statistical 

sense) estimates of the variances and co-variances of OLS estimators even if there is 

heteroscedasticity? The answer is yes.  

White’s Heteroscedasticity-Consistent Variances and Standard Errors. White has 

shown that this estimate can be performed so that asymptotically valid (i.e., large-



sample) statistical inferences can be made about the true parameter values. We will not 

present the mathematical details, for they are beyond the scope of this book. Nowadays, 

several computer package present White’s heteroscedasticity-corrected variances and 

standard errors along with the usual OLS variances and standard errors. Incidentally, 

White’s heteroscedasticity corrected standard errors are also known as robust standard 

errors.  

 

1.4 SUMMARY AND CONCLUSIONS: 

1. A critical assumption of the classical linear regression model is that the disturbances ui have 

all the same variance, σ2. If this assumption is not satisfied, there is heteroscedasticity. 

2. Heteroscedasticity does not destroy the unbiasedness and consistency properties of OLS 

estimators. 

3. But these estimators are no longer minimum variance or efficient. That is, they are not 

BLUE. 

4. The BLUE estimators are provided by the method of weighted least squares, provided the 

heteroscedastic error variances, σ2 i , are known. 

5. In the presence of heteroscedasticity, the variances of OLS estimators are not provided by 

the usual OLS formulas. But if we persist in using the usual OLS formulas, the t and F tests 

based on them can be highly misleading, resulting in erroneous conclusions. 

6. Documenting the consequences of heteroscedasticity is easier than detecting it. There are 

several diagnostic tests available, but one cannot tell for sure which will work in a given 

situation. 

7. Even if heteroscedasticity is suspected and detected, it is not easy to correct the problem. If 

the sample is large, one can obtain White’s heteroscedasticity corrected standard errors of OLS 

estimators and conduct statistical inference based on these standard errors. 

8. Otherwise, on the basis of OLS residuals, one can make educated guesses of the likely 

pattern of heteroscedasticity and transform the original data in such a way that in the 

transformed data there is no heteroscedasticity. 



 

1.5 LETS SUM IT UP: 

 

In the conclusion we can say that in the classical linear regression model the assumption that 

the disturbances ui have all the same variance, σ2, if this assumption is not satisfied, we face 

the problem of  heteroscedasticity. 

 

1.6 EXCERCISES: 

 

Q. 1  State with brief reason whether the following statements are true, false,or uncertain: 

a. In the presence of heteroscedasticity OLS estimators are biased as well as inefficient. 

b. If heteroscedasticity is present, the conventional t and F tests are invalid. 

c. In the presence of heteroscedasticity the usual OLS method always overestimates the 

standard errors of estimators. 

d. If residuals estimated from an OLS regression exhibit a systematic pattern, it means 

heteroscedasticity is present in the data. 

e. There is no general test of heteroscedasticity that is free of any assumption about which 

variable the error term is correlated with. 

f. If a regression model is mis-specified (e.g., an important variable is omitted), the OLS 

residuals will show a distinct pattern. 

g. If a regressor that has nonconstant variance is (incorrectly) omitted from a model, the (OLS) 

residuals will be heteroscedastic. 

 

Q. 2 What do mean by heteroskedasticity? 

 

Q. 3 What are the formal and informal methods of detecting heteroscedasticity? 

 

Q.4 What are the remedial measures which we can take in case of heteroscedastucity? 

 

Q.5 Explain the  OLS estimation in the presence of Heteroscedasticity ? 
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